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CONSTRAINED NMPC USING POLYNOMIAL
CHAOS THEORY

T. L. Aliyev and E. P. Gatzke

Department of Chemical Engineering
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Columbia, SC 29208
e-mail : gatzke sc.edu

Abstract: Establishing an accurate model of a multivariable nonlinear process with
uncertain parameters can be difficult. Application of control methods based on
nonlinear optimization may result in sub-optimal performance due to changes in
the parameters. This paper presents a new control method to handle parametric
uncertainty through incorporation of a Polynomial Chaos Theory (PCT) model
used in a constrained Nonlinear Model Predictive Control (NMPC) formulation.
Uncertain parameters are treated as random variables with a uniform distribution.
PCT expresses the entire uncertain process by a complete and orthogonal Legendre
polynomial basis in terms of random variables where expanded process outputs
are determined by applying Galerkin projection onto the polynomial basis. NMPC
formulation has the ability to apply hard input and soft output constraints to maintain
the process within specified bounds. It is shown that the proposed formulation can
be applied with an adequate tuning to minimize the effect of parametric uncertainty
on the process outputs.

Keywords: Model Predictive Control, Polynomial Chaos Theory, Parametric
Uncertainty

1. INTRODUCTION

Parametric uncertainty affects the quality of a
process model and as a result brings in signif-
icant challenges for process control engineering,
design and analysis. Different methods have been
used to better analyze and simulate the uncertain
systems: Monte Carlo and other statistical meth-
ods , Taylor expansion of the random variables,
worst cases scenarios and qualitative analysis of
prediction algorithms M. Papagelis (2005). While
some of these methods are expensive and require
parallel simulations to obtain the full statistics
after each time step Lovett (2004), and others
are related to artificial intelligence and the field
of decision making not currently applicable for
large-scale engineering applications, Polynomial
Chaos Theory (PCT) is a deterministic method

that is capable of calculating the entire statistics
of each uncertain variable during only one sim-
ulation. PCT analysis that includes polynomial
expansion of the uncertain variables results in a
multivariable system while the statistical infor-
mation required for reconstruction of the original
variables is stored in the form of coefficients in the
basis spanned by the polynomials.

Model Predictive Control (MPC) refers to a class
of control algorithms in which a dynamic model
of the plant is used to predict and optimize
the future behavior of the process Garcia et al.
(1989); Meadows and Rawlilngs (1997). At each
control interval, the MPC algorithm computes a
sequence of the manipulated variables to optimize
the future behavior of the plant. MPC has been
used extensively for control of refinery operations
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since MPC can accommodate multivariable sys-
tems, actuator constraints, and economic objec-
tives. The original linear MPC method has been
extended to include control of nonlinear dynamic
systems by a variety of authors Biegler and Rawl-
ings (1991); Ricker and Lee (1995); Henson and
Seborg (1997); Ettedgui et al. (1997); Marco et al.
(1997); Allgwer et al. (1999); Qin and Badgwell
(1999); Biegler (1998). Use of more accurate non-
linear process models potentially results in im-
proved controller performance but also requires
solution of a more difficult nonlinear optimization
problem. Most commercially available MPC tech-
nologies are based on a linear process model. For
processes that are highly nonlinear, the perfor-
mance of MPC based on a linear model can be
poor. This led to the development of Nonlinear
Model Predictive Control (NMPC) methods All-
gwer and Zheng (1993); Henson (1998); Biegler
and Rawlings (1991); Biegler (1998); Marco et al.
(1997); R. S. Parker and E. P. Gatzke and R.
Mahadevan and E. S. Meadows and F. J. Doyle
III (2001).

Many of the current NMPC schemes are based
on first principles physical models of the process.
However, in many cases such models are difficult
to obtain, time-consuming and often not available.
Process simulators can be used to obtain a nonlin-
ear empirical mathematical model which is iden-
tified from input-output data Qin and Badgwell
(1999). While NMPC offers potential for improved
process operation, the method also faces practical
issues that are considerably more challenging than
those associated with linear MPC. In particu-
lar, the problems associated with the nonlinear
optimization routine that must be solved online
at each sample period to generate the optimal
control sequence. Guaranteed closed-loop stability
of nonlinear systems using MPC based methods
generally use a terminal state constraint Muske
and Rawlings (1994); Sckokaert et al. (1999);
Mayne et al. (2000) or some sort of backup control
system that monitors convergence Mhaskar and
an P. D. Christofides (2005). The nonlinearity of
a refining process and multivariable interacting
nature of such systems makes this class of process
attractive to nonlinear MPC methods Simminger
et al. (1991); Skogestad and Postlethwaite (1996).

When implementing control on real multivariable
chemical or petrochemical processes such as dis-
tillation or separation operations, it is essential to
ensure that the process remain within established
safety limits and that each product meet certain
quality constraints and specifications. For control
purposes, all safety constraints and product qual-
ity specifications provide a set of control objec-
tives that must be satisfied. However, in situations
where the process is characterized by limited de-
grees of freedom (due to an input actuator sat-

uration, nonsquare process with limited inputs)
it typically becomes impossible for a controller
to meet all control objectives. In these types of
cases it is practically impossible for a controller to
impose hard constraints on the process outputs.
Direct incorporation of hard output constraints
would generally lead to infeasibility in the opti-
mization problem.

Since constrained MPC requires the solution of
an optimization problem at each time step, the
feasibility of that problem should be ensured.
Use of a terminal state constraint to guarantee
closed-loop stability can cause the nonlinear MPC
optimization problem to become infeasible. If the
online optimization problem is not feasible, then
some constraints would have to be relaxed and
the problem would be resolved. Determining the
constraints one must relax in order to get a
feasible problem with optimal deterioration of the
objective function could be extremely difficult.
A possible remedy to the problem is to consider
prioritized soft constraints on process outputs by
including a penalty term in the objective function.

The paper is organized as follows: first, Polyno-
mial Chaos Theory is presented in Section 2. The
proposed controller formulation is presented in
Section 3 along with an explanation of a method-
ology for handling output constraints. The case-
study used in this paper is presented and discussed
in Section 4. This work uses a two-tank model
as a nonlinear case-study. Open-loop and closed-
loop results are presented in Sections 5 and 6,
respectfully, and conclusions are drawn in Section
7.

2. POLYNOMIAL CHAOS THEORY

Polynomial Chaos Theory (PCT) was first intro-
duced in 1938 by an American mathematician
Norbert Wiener. Wiener used Hermite polynomi-
als to expand continuous uncertain variables into
a stochastic space and represent the uncertainty
in the form of probability distribution function
(PDF). The approach used by Wiener was later
broadened for the entire Askey scheme of orthog-
onal polynomials and was renamed Wiener-Askey
Polynomial Chaos Xiu and Karniadakis (2002).
Any continuous uncertain variable X (ω) can
be generally described using Polynomial Chaos
method as follows:

X(ω) =
∞∑

i=0

xi φi(ξ (ω)) (1)

where ξ represents random variables in terms of ω
with the type of probability distribution function
suitable for the chosen polynomial basis φi, and xi

are the coefficients of expansion for this uncertain
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variable. The infinite dimension of the polynomial
space given in Equation 1 must be replaced for
computational use by a finite dimension P :

X(ω) =
P∑

i=0

xi φi(ξ (ω)) (2)

Note that P equals the number of terms in the
expansion starting from 0. In general, the number
of terms P needed to describe each uncertain vari-
able in a PCT expanded model can be obtained
using

P =
(

(n + k)!
n! k!

− 1
)

(3)

where n is the number of random variables ξi and
k is the maximum order of the polynomial basis
to be used. Two cases are analyzed in this paper
and appear in the following subsections: a case
of only one uncertain parameter and a case of
two uncertain parameters, i.e. n = 1 and n = 2,
respectively.

2.1 Uncertainty in One Parameter

For a process in which only one parameter is
uncertain, Equation 3 becomes for n = 1:

P =
(

(1 + k)!
k!

− 1
)

(4)

which corresponds to P = k. This means that
the number of terms needed to deterministically
represent the stochastic process equals the order
of the polynomial expansion. Assuming uniform
distribution can choose Legendre polynomials to
be used for PCT expansion. The interval of or-
thogonality for Legendre Polynomials is [-1, 1]
and the weighting factor is 1. This translates into
two inner product definitions and orthogonality
conditions for Legendre polynomials expressed in
terms of the 2nd-order Kronecker delta function
δmn and a 3rd-order tensor Cijk, respectfully:

〈φiφj〉 ≡
〈
φ2

i

〉
δij =

1∫

−1

φi(ξ)φj(ξ) 1 dξ (5)

〈φiφjφk〉 ≡
〈
φ2

k

〉
Cijk =

1∫

−1

φi(ξ)φj(ξ)φk(ξ) 1 dξ

(6)
The orthogonality normalization factors

〈
φ2

i

〉
and〈

φ2
k

〉
that appear in Equations 5 and 6 can be

found in Table 1 up to order 2. The first two
terms (starting from 0) in the case of a second-
order Legendre polynomial basis are obtained
from Table 1: φ0 (ξ) = 1, φ1 (ξ) = ξ, and φ2(ξ) =

order k φk(ξ)
1∫
−1

φ2
k(ξ) dξ

0 1 2

1 ξ 2/3

2 0.5 (3 ξ2 − 1) 2/5

Table 1. Legendre polynomial terms up
to order 2 and orthogonality normal-
ization factors in the case of only one

uncertain parameter.

k → 0 1 2

i → 0 1 2 0 1 2 0 1 2

j=0 1 0 0 0 1 0 0 0 1

j=1 0 1/3 0 1 0 2/5 0 2/3 0

j=2 0 0 1/5 0 2/5 0 1 0 2/7

Table 2. Elements of the 3rd-order ten-
sor Cijk

0.5
(
3 ξ2 − 1

)
, so that the full PCT expansion of

a variable X in the process model is expressed in
the case of only one uncertain parameter and the
second-order Legendre polynomials by:

X =
2∑

i=0

xi φi(ξ) (7)

= x0 + x1 ξ + 0.5x2

(
3 ξ2 − 1

)

Once all the variables in the system are expanded
according to Equation 2, the resulting expressions
are substituted into the governing model equation
to form a PCT expanded model equation. The lat-
ter may in turn be discretized using Galerkin pro-
jection B. Cockburn (2000); Rice and Do (1995)
onto the polynomial chaos basis in Equation 2
and then expressed in terms of the coefficients xi,
the Kronecker delta function δij and the 3rd-order
tensor Cijk.

The terms 〈φiφjφk〉 or, alternatively, Cijk can be
calculated up to order 2 (total of 33 = 27 terms)
using Legendre polynomials and normalization
factors from Table 1 above. The terms of a tensor
Cijk are presented for each combination of i , j ,
and k in Table 2 Smith (2007).

Using the described procedure and the data pre-
sented in the tables above, the Polynomial Chaos
Theory analysis results in a new expanded deter-
ministic model of a higher order. In fact, if the
original governing model consists of n differential
equations, then the expanded model in the case of
one uncertain parameter will consist of n (k + 1)
equations, where k is the order of the PCT expan-
sion. The resulting PCT expanded model does not
include the random variables, and if presented in
a state-space model, the states of the new model
are the expansion coefficients xi from Equation 2.
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First order k = 1 Second order k = 2

φ0 = 1 φ3 = ξ1ξ2
φ1 = ξ1 φ4 = 0.5 (3 ξ 2

1 − 1)

φ2 = ξ2 φ5 = 0.5 (3 ξ 2
2 − 1)

Table 3. Legendre polynomial terms up
to order 2 and orthogonality normaliza-
tion factors in the case of two uncertain

parameters.

2.2 Uncertainty in Two Parameters

For a process in which two parameters are uncer-
tain, Equation 3 becomes for n = 2:

P =
(

(2 + k)!
2! k!

− 1
)

(8)

Using Equation 8 for a second-order polynomial
basis, i.e. k = 2, it is established that P = 5, which
means that five terms are required in the PCT
polynomial expansion in the form of Equation 2.
Note that two random variables ξ1 and ξ2 now
need to be used to express the terms of Legendre
polynomials. The terms up to order 2 appear
in Table 3. The detailed PCT analysis of this
case does not appear in this paper. However, the
analysis is very similar to the one presented in this
work.

3. NMPC HANDLING SOFT CONSTRAINTS

For a continuous nonlinear state-space model of
the form

dx

dt
(t) = f (t, x (t) , u (t))

y (t) = h (t, x (t) , u (t))

(9)

a general nonlinear discrete time dynamic model
with M past input terms, nu inputs, ny outputs,
move horizon of m, and prediction horizon of p, is
formulated according to:

yj(k + M) =
nu∑

i=1

k+M−1∑

l=k

[αj,i(l) g (ui(l))] (10)

along with a constant output disturbance term as:

yj(k)|k∈[1, p] = yModel
j + dj (11)

In equation 10, coefficients αj,i (l) relate output
j to a general nonlinear input term g (ui(l)) at
each time l. In equation 11, yModel

j is the model of
output j using the discrete representation in the
form given in Equation 10, yj (k) is a predicted
value of output j at time k, and the disturbance
update dj is defined as:

dj = yModel
j (0)− yMeas

j (0) (12)

where for each output j, yModel
j (k) is the model

value at the current time k = 0 and yMeas
j (k) is

the process measurement at the current time k =
0. In this model, values for ui before time k = 0
are known and values for times greater than m−1
are fixed to u(k+m−1). This formulation chooses
a sequence of input moves over the move horizon
(m) that minimizes a 2-norm cost function. A 2-
norm is used in the MPC objective function in
this work to avoid performance issues associated
with the 1-norm formulations Rao and Rawlings
(2000). The 2-norm objective function with soft
constraints takes the form:

φ =

ny∑

j=1

p∑

k=1

Γy,j (ej(k))2 +

nu∑

i=1

m∑

l=1

Γu,i (∆ui(l))
2

+

ny∑

j=1

p∑

k=1

Γysoft,j (sj(k))2 (13)

where ej (k) and sj(k) are the values of error
predicted for the k th time step into the future for
each output j. The error (e) is defined as

ej(k)|k∈[1, p] = yp,j(k)− ysp, j(k) (14)

where ysp, j(k) is the known setpoint value of
output j at time k and yp, j(k) is the predicted
value of output j at time k, updated based upon
process model mismatch at the current time. The
term ∆ui defines changes in input i according to

∆ui(k)|k∈[1, m] = ui(M + k)

−ui(M + k − 1) (15)

The soft constraint violation (s) is defined for
those values of output j that are outside the
range

[
y l

soft(k), · · · y u
soft(k)

]
. For model predictions

above the upper soft constraint limit, the soft
constraint violation is defined as:

sj(k)|k∈[1, p] = yp,j(k)− y u
soft, j(k) (16)

For violation below the lower soft constraint limit,
this violation is defined as:

sj(k)|k∈[1, p] = y l
soft, j(k)− yp,j(k) (17)

The soft constraint violation is zero otherwise.
This allows for violation of output constraints
without making the controller optimization prob-
lem infeasible. Γy,j , Γu,i and Γysoft,j are weight-
ing factors used to define the relative importance
of each objective function term in Equation 13.
However, penalty values must be tuned for this
process using the weight in the Γsoft matrix. The
term Γysoft,j is an penalty on the output error
that is applied depending on soft constraints on
that output. Note that the value of Γysoft,j is
at least an order of magnitude larger than the
maximum value of Γy,j . This is done to ensure
that soft constraint violations are minimized as
much as possible.
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In some cases, there may be multiple output
constraints. For example, a process may make
multiple product types that are defined by the
measured product quality. High profit products
must meet stringent quality limits while lower
quality products may be sold at a lower cost. To
implement this approach, based on deviation from
the setpoint error in Equation 14, multiple layers
of soft constraints with different penalties can be
implemented. In this formulation, the value of
the soft penalty Γysoft,j in the objective function,
Equation 13, increases by order of magnitude with
each additional layer, starting from a tight range
(for errors less than or equal to some small value
ǫ) and ending with a broader loose range (for
errors greater than 1.5ǫ, for example). The value
of the quality range ǫ as well as a penalty used
for each layer of constraints can be adjusted to
process needs depending on the output and the
sign of the error in Equation 14, i.e. the constraint
layers boundaries are not necessarily symmetrical
around the setpoint.

Combining Equations 11, 12, and 14-17 results
in a single objective function (Equation 13) that
depends only on the input values. The resulting
optimization problem becomes:

min φ

ul ≤ u ≤ uu (18)

The inclusion of soft constraints that are only
active in portions of the parameter space make
the objective function nonsmooth. The convexity
of the objective function φ could be examined in
detail.

Optimization is implemented using fminsearch
- multidimensional nonlinear minimization - in
Matlab. In MPC formulations, the prediction
horizon (p) can be chosen as a large value to
promote stability. Stability can also be ensured
through the use of a hard constraint which drives
the terminal state error to zero. This theoretical
guarantee for nominal stability fails in cases where
an unreachable setpoint is provided, as the opti-
mization problem is infeasible Long et al. (2006).
In such cases, a soft constraint could be used to
drive the system to a stable operating point when
possible.

4. CASE STUDY: TWO TANKS IN SERIES

The case study analyzed in this paper is a simple
two tank model described in Figure 1. The con-
stant cross-sectional tank areas are A1 and A2,
and the liquid heights are h1 and h2, respectfully.
There are two valves at the outlet of each tank
whose coefficients are k2 and k3. The flowrate into

Fig. 1. Flowchart of two connected tanks with
liquid levels h1 and h2, cross-sectional areas
A1 and A2.

the first tank is F1(t), the flowrates from the tanks
are proportional to the valve coefficients and the
square root terms of the liquid levels through:

F2 (t) = k2

√
h1 (t)

F3 (t) = k3

√
h2 (t)

(19)

The material balance around the system results
in the following mathematical model:

dh1 (t)
dt

=
1

A1
(F1 (t)− k2

√
h1 (t))

dh2 (t)
dt

=
1

A2
(k2

√
h1 (t)− k3

√
h2 (t))

(20)

It is worth noting at this point that in most
complex chemical processes it is impossible for
a mathematical model to fully represent all the
aspects of the ongoing process operation. How-
ever, the nonlinear model given in Equation 20 is
considered the most suitable representation of the
two-tank model. Note that time dependency of all
the variables was omitted in the model equation.

In order to effectively analyze the nonlinearity of
the system, the square root terms

√
hi can be

approximated using the Taylor series expansion
in the neighborhood of the points h0

i :

f(hi) = f(h0
i ) + f ′(h0

i )(hi − h0
i ) +

f ′′(h0
i )

2
(hi − h0

i )2(21)

+ . . .
f (n)(h0

i )

n!
(hi − h0

i )n

where f(hi) =
√

hi.

4.1 Uncertainty in One Parameter k2

4.1.1. First-Order Taylor Approximation
Using the first order Taylor series expansion
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given in Equation 21, the nonlinear square term√
hi (t) for any i reduces to:

√
hi (t) =

√
h0

i +
1

2
√

h0
i

(hi (t)− h0
i ) (22)

If h0
i is known, one can substitute Equation 22

into the model in Equation 20 so that the modified
model becomes:

dh1(t)

dt
=

1

A1

[
F1 (t) −

1

2
k2

√
h0
1 −

k2

2
√

h0
1

h1 (t)

]

dh2(t)

dt
=

1

A2

[
1

2
k2

√
h0
1 +

k2

2
√

h0
1

h1 (t) −
1

2
k3

√
h0
2 −

k3

2
√

h0
2

h2 (t)

]

(23)

Since the first valve coefficient k2 is the only un-
certain variable, one can apply polynomial chaos
expansion to the state variables h1 and h2, and
the only uncertain parameter k2 to get:

k2(ξ) =
P∑

i=0

k2,i φi(ξ)

h1(t, ξ) =
P∑

i=0

h1,i(t)φi(ξ)

h2(t, ξ) =
P∑

i=0

h2,i(t)φi(ξ)

(24)

In this PCT expansion, φi(ξ) (where ξ is a random
variable with uniform distribution) can be chosen
as Legendre polynomials for which the interval of
orthogonality is [-1, 1] and the weighting function
is simply 1, so that the first three Legendre
polynomial terms (for P = 2) in the case of only
one uncertain parameter as given in Table 1 are:
φ0(ξ) = 1, φ1(ξ) = ξ, and φ2(ξ) = 1

2 (3 ξ2 − 1).
Now one can insert Equation 24 into Equation 23
to obtain:

P∑

i=0

dh1,i(t, ξ)

dt
φi(ξ) =

1

A1

[
F1 (t) −

1

2

√
h0
1

P∑

i=0

k2,i φi(ξ)

]

−
1

A1

[
1

2
√

h0
1

P∑

i=0

P∑

j=0

k2,i h1,j(t) φi(ξ) φj(ξ)

]

P∑

i=0

dh2,i(t, ξ)

dt
φi(ξ) =

1

A2

[
1

2

√
h0
1

P∑

i=0

k2,i φi(ξ)

]

+
1

A2

[
1

2
√

h0
1

P∑

i=0

P∑

j=0

k2,i h1,j(t) φi(ξ) φj(ξ)

]

−
1

A2

[
1

2
√

h0
2

k3

P∑

j=0

h2,j(t) φj(ξ) −
1

2
k3

√
h0
2

]

(25)

Applying the orthogonality condition given in
Equation 5 and using a tensor notation from

Equation 6 it is possible to discretize the PCT
expanded model in Equation 25 using Galerkin
projection onto the polynomial chaos basis in
Equation 24 to get:

(∀k ∈ {0, . . . , P})
dh1,k(t)

dt
=

1∫
−1

{
1

A1

[
F1 (t) − 1

2

√
h0
1

P∑
i=0

k2,i φi(ξ)

]}
φk dξ

1∫
−1

φ2
k

dξ

+

1∫
−1

{
1

A1

[
− 1

2
√

h0
1

P∑
i=0

P∑
j=0

k2,i h1,j(t) φi(ξ) φj(ξ)

]}
φk dξ

1∫
−1

φ2
k

dξ

dh2,k(t)

dt
=

1∫
−1

{
1

A2

[
1
2

√
h0
1

P∑
i=0

k2,i φi(ξ) − 1

2
√

h0
2

k3

P∑
j=0

h2,j(t) φj(ξ)

]}
φk dξ

1∫
−1

φ2
k

dξ

+

1∫
−1

{
1

A2

[
1

2
√

h0
1

P∑
i=0

P∑
j=0

k2,i h1,j(t) φi(ξ) φj(ξ) − 1
2 k3

√
h0
2

]}
φk dξ

1∫
−1

φ2
k

dξ

(26)

This equation represents the PCT expanded two
tanks model, where instead of two original model
equations the expanded model now consists of
2(k +1) equations. It can be modified and rewrit-
ten in terms of a 3rd-order tensor Cijk and the
Kronecker delta δmn using Equations 6 and 5,
respectively:

dh1,k(t)

dt
=

1

A1

[
−

1

2
√

h0
1

P∑

i=0

P∑

j=0

k2,i h1,j(t) Cijk

]

+
1

A1




1∫
−1

F1 (t) φkdξ

1∫
−1

φ2
k

dξ

−
1

2

√
h0
1

P∑

i=0

k2,iδik




dh2,k(t)

dt
=

1

A2

[
1

2
√

h0
1

P∑

i=0

P∑

j=0

k2,i h1,j(t) Cijk

]

+
1

A2

[
1

2

√
h0
1

P∑

i=0

k2,iδik −
1

2
√

h0
2

k3

P∑

j=0

h2,j(t) δjk

]

+
1

A2



−

1∫
−1

1
2 k3

√
h0
2φk dξ

1∫
−1

φ2
k

dξ




(27)

A denominator
1∫
−1

φ2
k dξ in Equations 26 and 27

that accounts for orthogonality of Galerkin pro-
jection is given for k up to order 2 in Table 1.
The terms 〈φiφjφk〉 or, alternatively, Cijk can be
calculated using the inner product definition in
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Equation 6. These terms are summarized in Table
2.

In the first part of the resulting PCT expanded

model (Equation 27) a term
1∫
−1

F1 (t)φkdξ con-

tributes only when k = 0 due to the properties
of Legendre polynomials. For this simplest case of
zero-order, the resulting model consisting of two
differential equations is:

dh1,0(t)
dt

=
1

A1

[
F1 (t)− 1

2
k2,0

√
h0

1

]

− 1
A1

[
1

2
√

h0
1

k2,0 h1,0(t)

]

dh2,0(t)
dt

=
1

A2

[
1
2
k2,0

√
h0

1 −
1
2
k3

√
h0

2

]

+
1

A2

[
1

2
√

h0
1

k2,0 h1,0(t)−
1

2
√

h0
2

k3h2,0(t)

]

(28)
For this zero-order model, C000 = 1 was used. The
resulting first-order PCT expanded model consists
of four differential equations with up to P = 1
terms in each. Using the values of Cijk for k = 0
and k = 1, one can obtain from Equation 27:

dh1,0 (t)

dt
=

1

2A1[
2F1 (t) −

1√
h0
1

k2,0 h1,0 (t) −
1

3
√

h0
1

k2,1 h1,1 (t) −
√

h0
1 k2,0

]

dh1,1 (t)

dt
=

1

2A1[
−

1√
h0
1

k2,0 h1,1 (t) −
1√
h0
1

k2,1 h1,0 (t) −
√

h0
1 k2,1

]

dh2,0 (t)

dt
=

1

2A2[
1√
h0
1

k2,0 h1,0 (t) +
1

3
√

h0
1

k2,1 h1,1 (t)

]

+
1

2A2

[
−

1√
h0
2

k3 h2,0 (t) − k3

√
h0
2 +

√
h0
1 k2,0

]

dh2,1 (t)

dt
=

1

2A2

[
1√
h0
1

k2,0 h1,1 (t) +

√
h0
1 k2,1

]

+
1

2A2

[
1√
h0
1

k2,1 h1,0 (t) −
1√
h0
2

k3 h2,1 (t)

]

(29)

Equation 29 can also be rewritten in a state-space
form:

dxPCT (t)

dt
= APCT (t) xPCT (t)

+BPCT (t) u (t) + ΓPCT

y
PCT

(t) = CPCT (t) xPCT (t) + DPCT (t) u (t)

(30)

where xPCT (t) = [h1,0 (t) h1,1 (t) h2,0 (t) h2,1 (t)]T is a
vector of expanded states,

and y
PCT

(t) = xPCT (t) is the output vector that
includes all the expanded states.

Matrices APCT , BPCT , CPCT , DPCT and ΓPCT
can then be identified as follows:

AP CT = (31)


−
1

2

k2,0

A1

√
h0
1

−
1

6

k2,1

A1

√
h0
1

0 0

−
1

2

k2,1

A1

√
h0
1

−
1

2

k2,0

A1

√
h0
1

0 0

1

2

k2,0

A2

√
h0
1

1

6

k2,1

A2

√
h0
1

−
1

2

k3

A2

√
h0
2

0

1

2

k2,1

A2

√
h0
1

1

2

k2,0

A2

√
h0
1

0 −
1

2

k3

A2

√
h0
2




BP CT =




1

A1
0
0
0


 (32)

ΓP CT =




−
1

2A1

√
h0
1 k2,0

−
1

2A1

√
h0
1 k2,1

1

2A2

√
h0
1 k2,0 − k3

1

2A2

√
h0
2

1

2A2

√
h0
1 k2,1




(33)

CP CT =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
, DP CT =

(
0
0
0
0

)
(34)

The second-order PCT expanded model consists
of six differential equations with P = 2 terms in
each.

dh1,0(t)

dt
=

1

2A1

[
2F1 (t) −

1√
h0
1

k2,0 h1,0(t)

]

+
1

2A1

[
−

1

3
√

h0
1

k2,1 h1,1(t) −
√

h0
1 k2,0

]

dh1,1(t)

dt
=

1

2A1

[
−

1√
h0
1

k2,0 h1,1(t) −
√

h0
1 k2,1

]

+
1

2A1

[
−

1√
h0
1

k2,1 h1,0(t) −
2

5
√

h0
1

k2,1 h1,2

]

dh1,2(t)

dt
=

1

2A1

[
−

1√
h0
1

k2,0 h1,2(t) −
2

3
√

h0
1

k2,1 h1,1(t)

]

dh2,0(t)

dt
=

1

2A2

[
1√
h0
1

k2,0 h1,0(t) + k2,0

√
h0
1

]

+
1

2A2

[
−

1√
h0
2

k3h2,0(t) +
1

3
√

h0
1

k2,1 h1,1(t) − k3

√
h0
2

]

dh2,1(t)

dt
=

1

2A2

[
1√
h0
1

k2,0 h1,1(t) +

√
h0
1 k2,1 h1,0(t)

]

+
1

2A2

[
+

2

5
√

h0
1

k2,1 h1,2 −
1√
h0
2

k3h2,1(t) + k2,1

√
h0
1

]

dh2,2(t)

dt
=

1

2A2

[
1√
h0
1

k2,0 h1,2(t)

]

+
1

2A2

[
2

3
√

h0
1

k2,1 h1,1 −
1√
h0
2

k3h2,2(t)

]

(35)
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4.1.2. Second-Order Taylor Approximation Us-
ing the second order Taylor series expansion given
in Equation 21, the nonlinear square term

√
hi for

any i reduces to:

√
hi =

√
h0

i +
1

2
√

h0
i

(hi − h0
i ) − 1

8

(√
h0

i

)3

(
hi − h0

i

)2

(36)

If h0
i is known, can substitute Equation 36 into the

model in Equation 20 so that the modified model
consisting of two differential equations becomes:

dh1(t)

dt
=

k2

A1


F1 (t)

k2
− 1

2

√
h0
1 +

1

8

(√
h0
1

)3

(
h0
1

)2



+
k2

A1


−


 1

2
√

h0
1

+
h0
1

4

(√
h0
1

)3


h1 (t)




+
k2

A1


 1

8

(√
h0
1

)3
(h1 (t))2




dh2(t)

dt
=

k2

A2


1

2

√
h0
1 −

1

8

(√
h0
1

)3

(
h0
1

)2



+
k2

A2





 1

2
√

h0
1

+
h0
1

4

(√
h0
1

)3


h1 (t)




+
k2

A2


− 1

8

(√
h0
1

)3
(h1 (t))2




+
k3

A2


−1

2

√
h0
2 +

1

8

(√
h0
2

)3

(
h0
2

)2



+
k3

A2


−


 1

2
√

h0
2

+
h0
2

4

(√
h0
2

)3


h2 (t)




+
k3

A2


 1

8

(√
h0
2

)3
(h2 (t))2




(37)

This model can be simplified into

dh1(t)

dt
=

k2

A1

[
F1 (t)

k2
− 3

8

√
h0
1 −

3

4
√

h0
1

h1 (t)

]

+
k2

A1


 1

8

(√
h0
1

)3
(h1 (t))2




dh2(t)

dt
=

k2

A2

[
3

8

√
h0
1 +

3

4
√

h0
1

h1 (t)

]

k2

A2


− 1

8

(√
h0
1

)3
(h1 (t))2




+
k3

A2

[
−3

8

√
h0
2 −

3

4
√

h0
2

h2 (t)

]

+
k3

A2


 1

8

(√
h0
2

)3
(h2 (t))2




(38)

Here, again set the valve coefficient k2 as the only
uncertain variable. At this point one can apply
polynomial chaos expansion to the state variables
h1 and h2, and the uncertain parameters k2 to
obtain the same PCT expansion as in Equation
24. However, the model in Equation 38 that was
obtained using Taylor approximation up to second
order, now includes nonlinear multiplication of
three variables: k2h1h1 and k3h2h2, respectively.
Now, by inserting Equation 24 into the model
in Equation 37, or in other words presenting the
model using Legendre polynomials φi(ξ), yields:

A1

P∑

i=0

dh1,i(t, ξ)

dt
φi(ξ) = F1 (t) −

3

8

√
h0
1

P∑

i=0

k2,i φi(ξ)

−
3

4
√

h0
1

P∑

i=0

P∑

j=0

k2,i h1,j(t) φi(ξ) φj(ξ)

+
1

8
(√

h0
1

)3
P∑

i=0

P∑

j=0

P∑

l=0

k2,i h1,j (t) h1,l(t) φi(ξ) φj(ξ) φl(ξ)

A2

P∑

i=0

dh2,i(t, ξ)

dt
φi(ξ) =

3

8

√
h0
1

P∑

i=0

k2,i φi(ξ)

+
3

4
√

h0
1

P∑

i=0

P∑

j=0

k2,i h1,j(t) φi(ξ) φj(ξ)

−
1

8
(√

h0
1

)3
P∑

i=0

P∑

j=0

P∑

l=0

k2,i h1,j (t) h1,l(t) φi(ξ) φj(ξ) φl(ξ)

−
3

8
k3

√
h0
2 −

3

4
√

h0
2

k3

P∑

j=0

h2,j(t) φj(ξ)

1

8
(√

h0
2

)3 k3

P∑

i=0

P∑

j=0

h2,i (t) h2,j(t) φi(ξ)φj(ξ)

(39)

Now a 4th-order tensor notation should be intro-
duced in addition to that in Equation 6:

〈φiφjφlφk〉 ≡
〈
φ2

k

〉
Dijlk (40)

where an inner product is defined for Legendre
polynomials with weighting factor 1 according to:
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〈φiφk〉 =

1∫

−1

φi(ξ)φk(ξ) 1 dξ

〈φiφjφk〉 =

1∫

−1

φi(ξ)φj(ξ)φk(ξ) 1 dξ

〈φiφjφlφk〉 =

1∫

−1

φi(ξ)φj(ξ)φl(ξ)φk(ξ) 1 dξ

(41)

In Equations 6 and 40, Cijk and Dijlk are 3rd

and 4th-order tensors, respectively, that can be
determined based on the knowledge of Legendre
polynomial terms φi.
At this point it is possible to discretize the PCT
expanded model in Equation 39 using Galerkin
projection onto the polynomial chaos basis in
Equation 24 to get:

1∫

−1

φ
2
k dξ

dh1,k(t)

dt
= (42)

+

1∫

−1

1

A1
[H1 + H2 + H3]

H1 = F1 (t) −
3

8

√
h0
1

P∑

i=0

k2,i φi(ξ)

H2 = −
3

4
√

h0
1

P∑

i=0

P∑

j=0

k2,i h1,j(t) φi(ξ) φj(ξ)

H3 =
1

8
(√

h0
1

)3
P∑

i=0

P∑

j=0

P∑

l=0

k2,i h1,j (t) h1,l(t) φi(ξ) φj(ξ) φl(ξ)

1∫

−1

φ
2
k dξ

dh2,k(t)

dt
= (43)

1∫

−1

1

A2
[H4 + H5 + H6 + H7 + H8] φk dξ

H4 =
3

8

√
h0
1

P∑

i=0

k2,i φi(ξ)

H5 =
3

4
√

h0
1

P∑

i=0

P∑

j=0

k2,i h1,j(t) φi(ξ) φj(ξ)

H6 = −
1

8
(√

h0
1

)3
P∑

i=0

P∑

j=0

P∑

l=0

k2,i h1,j (t) h1,l(t) φi(ξ) φj(ξ) φl(ξ)

H7 = −
3

8
k3

√
h0
2 −

3

4
√

h0
2

k3

P∑

j=0

h2,j(t) φj(ξ)

H8 =
1

8
(√

h0
2

)3 k3

P∑

i=0

P∑

j=0

h2,i (t) h2,j(t) φi(ξ)φj(ξ)

Equations 42 and 43 represent the PCT expanded
nonlinear two tanks model, where instead of two
original model equations the expanded model now
consists of 2(k + 1) equations. These equations

can be modified and rewritten in terms of a 3rd-
order tensor Cijk , a 4th-order tensor Dijlk, and
the Kronecker delta δik using Equations 6, 40 and
5, respectively:

A1
dh1,k(t)

dt
=

1∫
−1

F1 (t) φkdξ

1∫
−1

φ2
k

dξ

−
3

8

√
h0
1

P∑

i=0

k2,iδik −
3

4
√

h0
1

P∑

i=0

P∑

j=0

k2,i h1,j(t) Cijk

+
1

8
(√

h0
1

)3
P∑

i=0

P∑

j=0

P∑

l=0

k2,i h1,j (t) h1,l(t) Dijlk

A2
dh2,k(t)

dt
=

3

8

√
h0
1

P∑

i=0

k2,iδik

+
3

4
√

h0
1

P∑

i=0

P∑

j=0

k2,i h1,j(t) Cijk

−
1

8
(√

h0
1

)3
P∑

i=0

P∑

j=0

P∑

l=0

k2,i h1,j (t) h1,l(t) Dijlk

−

1∫
−1

3
8 k3

√
h0
2φk dξ

1∫
−1

φ2
k

dξ

−
3

4
√

h0
2

k3

P∑

j=0

h2,j(t) δjk

+
1

8
(√

h0
2

)3 k3

P∑

i=0

P∑

j=0

h2,i (t) h2,j(t) Cijk

(44)

A denominator
1∫
−1

φ2
k dξ in Equations 42 and 44

that accounts for orthogonality of Galerkin pro-
jection was given for k up to order 2 in Table 1.
The terms 〈φiφjφk〉 or, alternatively, Cijk were
also calculated up to order 2 (total of 33 = 27
terms) using Legendre polynomials and normal-
ization factors from Table 1. These terms appear
in Table 2.
The main difference between the PCT expanded
model after applying a Galerkin projection that
was developed in the previous section and given in
Equation 27 and the one obtained for the second
order Taylor approximation - Equation 44 - is the
addition of the 4th-order tensor Dijlk. Its coeffi-
cients can be computed for different combinations
of indexes i,j,l, and k using an inner product
definition that was given in Equations 41 and 40:

〈
φiφjφlφk

〉
=

1∫

−1

φi(ξ)φj(ξ)φl(ξ) φk(ξ) dξ =
〈

φ
2
k

〉
Dijlk (45)

whereas Legendre polynomials φi(ξ) were pre-
sented in Table 1 for i = [0 . . . 2]. It is, however,
easier to use the fact that integration over an odd
function under the limits [−1, 1] always results in
zero, which again eliminates all the tensor terms
for which the sum (i+j + l+k) is an odd number.
Moreover, in cases when any one of the indexes
i,jor l is zero, since φ0(ξ) = 1, using Equations 6
and 40 and choosing, for instance, j = 0:
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〈φiφ0φlφk〉 ≡
〈
φ2

k

〉
Dijlk = 〈φiφlφk〉 ≡

〈
φ2

k

〉
Cilk (46)

so that:

for j = 0 : Dijlk = Cilk (47)

whereas the 3rd-order tensor coefficients Cilk in
Equation 47 can be found in Table 2. In the
first part of the resulting PCT expanded model

(Equation 27) a term
1∫
−1

F1 (t)φkdξ contributes

only when k = 0 due to the properties of Legendre
polynomials. For the simplest case of zero-order
PCT expansion, the resulting model consisting of
two differential equations is:

dh1,0(t)

dt
=

1

A1

[
F1 (t) − 3

4
√

h0
1

k2,0 h1,0(t)

]

+
1

A1


−3

8
k2,0

√
h0
1 +

1

8
k2,0

h1,0(t)2(√
h0
1

)3




dh2,0(t)

dt
=

1

A2

[
3

4
√

h0
1

k2,0 h1,0(t)

]

+
1

A2


3

8
k2,0

√
h0
1 −

3

8
k3

√
h0
2 +

1

8
k3

h2,0(t)2(√
h0
2

)3




+
1

A2


− 3

4
√

h0
2

k3h2,0(t) − 1

8
k2,0

h1,0(t)2(√
h0
1

)3




(48)

For this zero-order expanded model, C000 = 1
and D0000 = 1 were used. Equation 48 can be
analyzed as the PCT expanded system achieves
steady-state. In this case, the derivatives of the
expanded states will vanish which will result in
two nonlinear equalities:

F
ss
1 −

3

4
√

h0
1

k2,0 h
ss
1 −

3

8
k2,0

√
h0
1 +

1

8
k2,0

(
hss
1

)2
(√

h0
1

)3 = 0

3

4
√

h0
1

k2,0 h
ss
1 +

3

8
k2,0

√
h0
1 −

3

8
k3

√
h0
2

−
3

4
√

h0
2

k3h
ss
2 +

1

8
k3

(
hss
2

)2
(√

h0
2

)3 −
1

8
k2,0

(
hss
1

)2
(√

h0
1

)3 = 0

(49)

Summing the two equalities in Equation 49 results
in a more comfortable set

F
ss
1 −

3

4
√

h0
1

k2,0 h
ss
1 −

3

8
k2,0

√
h0
1 +

1

8
k2,0

(
hss
1

)2
(√

h0
1

)3 = 0

F
ss
1 −

3

8
k3

√
h0
2 −

3

4
√

h0
2

k3h
ss
2 +

1

8
k3

(
hss
2

)2
(√

h0
2

)3 = 0

(50)

In both Equations 49 and 50, hss
1 = h1,0 (t →∞)

and hss
2 = h2,0 (t →∞) are the steady-state val-

ues of the states, and F ss
1 = F1 (t →∞) is the

steady state value of the input. The equalities that
appear in Equation 50 are second order polyno-
mials that can be easily solved using traditional

methods for a known steady state input value F ss
1 .

The first-order PCT expanded model consists of
four differential equations with up to P = 1 terms
in each. Using the values of Cijk and Dijlk for
k = 0 and k = 1, one can obtain from Equation
44:

A1
dh1,0(t)

dt
= F1 (t) −

3

4
√

h0
1

k2,0 h1,0(t)

−
3

8
k2,0

√
h0
1 +

1

8
k2,0

h1,0(t)2(√
h0
1

)3 −
1

4
k2,1

h1,1(t)√
h0
1

+
1

24
k2,0

h1,1(t)2(√
h0
1

)3 +
1

12
k2,1

h1,0(t) h1,1(t)(√
h0
1

)3

A1
dh1,1(t)

dt
=

3

40
k2,1

h1,1(t)2(√
h0
1

)3 −
3

4
k2,0

h1,1(t)√
h0
1

+
1

4
k2,0

h1,0(t) h1,1(t)(√
h0
1

)3 −
3

4
k2,1

h1,0(t)√
h0
1

+
1

8
k2,1

h1,0(t)2(√
h0
1

)3 −
3

8
k2,1

√
h0
1

A2
dh2,0(t)

dt
= −

1

24
k2,0

h1,1(t)2(√
h0
1

)3 +
1

4
k2,1

h1,1(t)√
h0
1

+
1

24
k3

h2,1(t)2(√
h0
2

)3 −
1

12
k2,1

h1,0(t) h1,1(t)(√
h0
1

)3

+
1

8
k3

h2,0(t)2(√
h0
2

)3 −
1

8
k2,0

h1,0(t)2(√
h0
1

)3 +
3

4
k2,0

h1,0(t)√
h0
1

+
3

4
k3

h2,0(t)√
h0
2

+
3

8
k2,0

√
h0
1 −

3

8
k3

√
h0
2

A2
dh2,1(t)

dt
=

3

8
k2,1

√
h0
1 +

3

4
k2,0

h1,1(t)√
h0
1

−
3

40
k2,1

h1,1(t)2(√
h0
1

)3 −
1

8
k2,1

h1,0(t)2(√
h0
1

)3

−
3

4
k3

h2,1(t)√
h0
2

+
1

4
k3

h2,0(t) h2,1(t)(√
h0
2

)3

+ −
1

4
k2,0

h1,0(t) h1,1(t)(√
h0
1

)3 +
3

4
k2,1

h1,0(t)√
h0
1

(51)

For this first-order expanded model, coefficients
D1001 = D0101 = D0011 = 1 and D1111 = 3

5 were
used based on Equation 47 and the values of cor-
responding coefficients Cijk from Table 2. Higher
order PCT expanded models can be developed in
a similar way. They include too many terms to be
included in this paper.

Equation 51 represents a set of four nonlinear
differential equations that can be presented in a
general compact form:

dxPCT (t)
dt

= f
PCT

(xPCT (t) , uPCT (t))

y
PCT

(t) = hPCT (xPCT (t))

(52)

The uncertain model given in Equation 51 can
be initially analyzed for the simplest case of no
uncertainty in the variable k2, i.e. k2,1 = 0. For
this case, Equation 51 is reduced to:
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A1
dh1,0(t)

dt
= F1 (t) −

3

4
√

h0
1

k2,0 h1,0(t) −
3

8
k2,0

√
h0
1

+
1

8
k2,0

h1,0(t)2(√
h0
1

)3 +
1

24
k2,0

h1,1(t)2(√
h0
1

)3

A1
dh1,1(t)

dt
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1

4
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h1,0(t) h1,1(t)(√
h0
1
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h0
2

)3

+
3

4
k2,0

h1,0(t)√
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1

+
1

8
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h2,0(t)2(√
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2

)3 +
3

8
k2,0

√
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1

−
1

8
k2,0

h1,0(t)2(√
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1

)3 −
3

4
k3

h2,0(t)√
h0
2

−
3

8
k3

√
h0
2

A2
dh2,1(t)

dt
=

3

4
k2,0

h1,1(t)√
h0
1

−
1

4
k2,0

h1,0(t) h1,1(t)(√
h0
1

)3

−
3

4
k3

h2,1(t)√
h0
2

+
1

4
k3

h2,0(t) h2,1(t)(√
h0
2

)3

(53)

Moreover, if it is assumed that all the parameters
are certain it would make sense to further simplify
the model by eliminating the states distribution
terms by setting h1,1 (t) = 0 and h2,1 (t) = 0, so
that Equation 53 becomes

dh1,0(t)

dt
=

1

A1

[
F1 (t) −

3

4
√

h0
1

k2,0 h1,0(t)

]

+
1

A1

[
−

3

8
k2,0

√
h0
1 +

1

8
k2,0

h1,0(t)2(√
h0
1

)3
]

dh2,0(t)

dt
=

1

A2

[
3

4
k2,0

h1,0(t)√
h0
1

+
1

8
k3

h2,0(t)2(√
h0
2

)3 +
3

8
k2,0

√
h0
1

]

+
1

A2

[
−

1

8
k2,0

h1,0(t)2(√
h0
1

)3 −
3

4
k3

h2,0(t)√
h0
2

−
3

8
k3

√
h0
2

]

(54)

which in turn is identical to the first-order PCT
model given in Equation 48. Equation 51 can
be analyzed for the steady-state constraints. At
steady state all the derivatives in Equation must
vanish which results in a set of four equality
constraints in which the variables h1,0, h1,1, h2,0,
h2,1 are the values of the expanded states at
steady state. Given all the constant parameters
and the steady-state input value F1 the task of
evaluating steady-state constraints for this first-
order expanded PCT model reduces to solving a
set of four second-order algebraic equations with
four unknowns h1,0, h1,1, h2,0, h2,1.

5. OPEN-LOOP RESULTS

The original system model was introduced in
Equation 20. To solve that model one needs to
make sure that the system is open-loop stable.
The eigenvalues of the system given in Equation
20 are λ1 = − k2

A1
and λ2 = − k3

A2
. To ensure open-

loop stability, i.e. both eigenvalues less than −1,
can select the following values for the parameters
used in the model: A1 = 1 [units of area], A2 = 2

[units of area], k2 = 3 [units of area
time ], and k3 = 4

[units of area
time ]. Substituting these values into the

original model in Equation 20, one gets:

dh1(t)
dt

= F1 (t)− 3
√

h1(t)

dh2(t)
dt

= 1.5
√

h1(t)− 2
√

h2(t)

(55)

Equation 55 is an open-loop stable system of two
nonlinear differential equations, for which one can
assume zero initial states: h1(0) = h2(0) = 0. The
steady-state values, h1,ss and h2,ss can be easily
obtained from Equation 55 using dhi(t)

dt = 0. For a
steady state input value F ss

1 = 12 [units of volume
time ]

the result is: hss
1 = 16 [units of height], and

hss
2 = 9 [units of height]. To obtain the solution

of the model in Equation 55, one can linearize the
model with respect to steady state values as shown
below using first-order Taylor approximation.

5.1 Zero-Order PCT Expansion

The simplest zero-order PCT expanded model was
derived earlier and is given in Equation 28. For the
given problem with only one uncertain parameter
k2 it is expanded using Legendre polynomials up
to order 0 according to:

k2 = k2,0 φ0(ξ) = k2,0 (56)
in which φ0(ξ) = 1 was introduced earlier in
Table 1. A uniformly distributed (dimensionless)
random variable ξ does not appear in the final
expanded model given in Equation 29, and is only
used for PCT expansion as was shown in the previ-
ous section. With analogy to the original problem
where a parameter k2 was assumed to have a
steady state value of 3, one can choose a mean
value k2,0 = 3 [units of area

time ]. Substituting this
mean value together with all the other parameters
into Equation 28, yields the following zero-order
PCT expanded model:

dh1,0(t)

dt
=

[
F1 (t)− 3

2
√

h0
1

h1,0(t) − 3

2

√
h0
1

]

dh2,0(t)

dt
=

1

2

[
3

2
√

h0
1

h1,0(t) +
3

2

√
h0
1 − 2

√
h0
2 −

2√
h0
2

h2,0(t)

]

(57)

This zero-order PCT expanded model that as-
sumes no distribution in the uncertain parameter
k2 depends on the starting points h0

1 and h0
2 that

were used for Taylor approximation. Since this
work addresses deviations from steady conditions,
it is assumed that Taylor approximation applied
around the steady state points hss

1 and hss
2 so that
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for a steady state input value F ss
1 = 12 [units of

volume
time ]:

h0
1 = hss

1 = 16

h0
2 = hss

2 = 9
(58)

[units of height] and the Taylor approximation up
to order 1 in Equation 22 reduces to

√
h1 = 2 +

1
8

h1

√
h2 =

3
2

+
1
6

h2

(59)

Now, if one inserts Equation 59 into the original
nonlinear model in Equation 55, the latter be-
comes:

dh1(t)
dt

=
1
2

F1 (t)− 3
8

h1(t)

dh2(t)
dt

=
3
16

h1(t)−
1
3

h2(t)

(60)

Substituting the values from Equation 58 into
Equation 57, yields:

dh1,0(t)
dt

=
1
2

F1 (t)− 3
8

h1,0(t)

dh2,0(t)
dt

=
3
16

h1,0(t)−
1
3

h2,0(t)

(61)

As expected, the two resulting models in Equa-
tions 60 and 62 are identical, for in the simplest
zero-order PCT expanded case hi = hi,0. To ob-
tain the solution of the linear model in Equation
60, can implement Laplace transform of each dif-
ferential equation to get:

sH1(s)− h1(0) =
1
2
F1 (s)− 3

8
H1 (s)

sH2(s)− h2(0) =
3
16

H1 (s)− 1
3

H2 (s)

(62)

Eliminating the initial conditions h1 (0) = h2 (0) =
0 Equation 62 is simplified to

H1 (s) =
1
2
F1 (s)

1(
s + 3

8

)

H2 (s) =
3
32

F1 (s)
1(

s + 3
8

) (
s + 1

3

)
(63)

where Hi(s) and F1(s) are Laplace transforms in
s-domain of hi(t) and F1(t), respectively. Given a
constant steady state input value F ss

1 = 12 [units
of volume

time ] and applying the inverse Laplace trans-
form on Equation 63, one obtains the solution to
the original (or zero-order PCT) linearized model:

0 5 10 15 20 25 30
0

5

10

15

20

h1

Comparing the original and First−order Taylor approximated models

0 5 10 15 20 25 30
0

2

4

6

8

10

h2

Fig. 2. Comparison between the original model
and the First-order Taylor approximated
model of two tanks.

h1(t) = 16− 16e−
3
8 t

h2(t) = 9− 81e−
1
3 t + 72e−

3
8 t

(64)

Figure 2 shows the comparison between the origi-
nal nonlinear two tank model (blue) and the First-
order Taylor approximated model (red).

5.2 First-Order PCT Expansion

The first order PCT expanded model was also
derived earlier and given in Equation 29. For the
given problem with only one uncertain parameter
k2 it is expanded using Legendre polynomial up
to order 1 according to:

k2 = k2,0φ0(ξ) + k2,1φ1(ξ) = k2,0 + k2,1ξ (65)

in which φ0(ξ) = 1 and φ1(ξ) = ξ were introduced
earlier in Table 1. Similar to the previous case of
zero-order PCT expansion, where a mean value of
k2,0 = 3 [units of area

time ] was used, now a first-order
distribution value of k2,1 = 0.3 [units of area

time ] is
being used to introduce disturbance around the
mean value in the uncertain parameter k2. The
starting points for Taylor approximation are also
chosen as in Equation 58. Substituting all the
values into Equation 29, yields the following first-
order PCT expanded model:

dh1,0(t)

dt
=

1

2

[
2F1 (t) − 3

4
h1,0(t)− 1

40
h1,1(t) − 12

]

dh1,1(t)

dt
=

1

2

[
−3

4
h1,1(t) − 3

40
h1,0(t)− 1.2

]

dh2,0(t)

dt
=

1

4

[
3

4
h1,0(t) +

1

40
h1,1(t)− 4

3
h2,0(t)

]

dh2,1(t)

dt
=

1

4

[
3

4
h1,1(t) +

3

40
h1,0(t)− 4

3
h2,1(t) + 1.2

]

(66)

Equation 66 now consists of four differential equa-
tions (with assumed zero initial conditions) that

17th International Conference on Process Control 2009
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First−order PCT expansion using Taylor first−order approx.
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0
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1
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1

Fig. 3. First-order PCT expanded model showing
the states mean values and distributions for
F1 = 12.

can be solved using Matlab MathWorks (2000) as
a function of the process input F1. Equation 66
can be rewritten in a state-space format presented
in Equation 67 as:

dxPCT (t)

dt
= APCT (t) xPCT (t)

+BPCT (t) u (t) + ΓPCT

y
PCT

(t) = CPCT (t) xPCT (t)

+DPCT (t) u (t)

(67)

where xPCT (t) = [h1,0 (t) h1,1 (t) h2,0 (t) h2,1 (t)]T

is a vector of expanded states, and y
PCT

(t) =
xPCT (t) is the output vector that includes all the
expanded states. Matrices APCT , BPCT , CPCT ,
CPCT and ΓPCT are identified as follows:

APCT =




−3

8
− 1

80
0 0

− 3

80
−3

8
0 0

3

16

1

160
−1

3
0

3

160

3

16
0 −1

3




(68)

BPCT =




1

0

0

0


 , ΓPCT =




−6

−0.6

0

0.3


 (69)

CPCT =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 , DPCT =




0

0

0

0


 (70)

Figure 3 shows the states mean values h1,0 and
h2,0 and their respective distributions h1,1 and
h2,1 as they achieve the steady state. At this point,
it might be useful to apply the same disturbance
to the original problem (with no application of
Polynomial Chaos Theory). This can be done in
Matlab.

Figure 4 shows the states h1 and h2 for two cases:
the original problem of a constant value of a
parameter k2 = 3 [units of area

time ] (shown in blue)

0 5 10 15 20 25 30
0

5

10

15

20

h1

Original two tanks problem with uncertainty in k2.

0 5 10 15 20 25 30
0

5

10

h2

0 5 10 15 20 25 30
2.5

3

3.5

k2

Fig. 4. The effect of uncertainty in the input
parameter k 2 for the original problem.

and the case when this parameter is subject to a
random normal distribution of about 10% around
its mean value (shown in red).

6. CLOSED-LOOP RESULTS

This section examines the closed-loop results for
control of the two-tank model. Initially, NMPC
control formulation was applied on the original
two-tank model with uncertain valve coefficient
k2. The nonsquare 2x1 control system is exam-
ined using NMPC controller formulation and the
proposed soft constraint methodology. The results
appear in Figures 5 and 6. The fact that the
original model used in the case-study for this work
consists of two outputs and only one input makes
it impossible for the controller to track all possi-
ble setpoints. Moreover, only certain ratio of the
steady-state values can be achieved in this case.
Therefore, the authors were more interested in
analyzing the ability to apply soft constraints on
the process outputs and thus enable safe operation
within the bounds of interest even when a small
disturbance is applied. By tuning the controller
parameters such as penalties in the cost function
it is possible to push the process into the desired
region or make it track a certain setpoint if abso-
lutely needed.

6.1 NMPC with soft constraints on the process
outputs applied on the original two-tank model

Figure 5 shows closed-loop control of the origi-
nal model with soft constraints on the outputs.
This control operation used zero setpoint tracking
penalties and equal soft constraints penalties for
the two outputs. As can be observed from Figure
5 the controller is able to handle soft constraints
on the outputs until a small disturbance hits the
process at time t = 18. The disturbance causes

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Le-Th-1, 036.pdf

300



Fig. 5. NMPC with soft constraints on the pro-
cess outputs with zero steady-state regulation
penalty in the objective function. Observed
no setpoint tracking and no soft-constraints
violation until a small disturbance was ap-
plied and after its effect was removed.

Fig. 6. NMPC with soft constraints on the process
outputs with a large steady-state regulation
penalty on the second output in the objective
function. Shown setpoint tracking and no
soft constraints violation even when a small
disturbance was applied.

the process to deviate from the previous bounds
up until its removal. A smaller disturbance is
then tested with the same setpoints and slightly
enhanced soft constraints bounds on the outputs
while the tuning is set to track the setpoint of the
second output. The results appear in Figure 6. It
follows from the plot that no deviation from the
safety bounds is observed despite the disturbance
being applied. It is worth noting that the un-
certain parameter k2 was simulated to randomly
change within a small region around its steady-
state value.

6.2 NMPC with soft constraints on the process
outputs applied on the PCT expanded model

As was described earlier in the paper PCT analy-
sis when used for control purposes enables direct
control of various components of the expanded
model. In particular, a possible control tuning
strategy when trying to decrease the effect of
parametric uncertainty on the system’s perfor-
mance might include an increased penalty on
those components that represent uncertainty. The
first-order PCT expanded two-tank model with
one uncertain parameter k2, used with second-
order Taylor approximation, was developed in
Section 4 and resulted in a dynamic nonlinear
model with four states given in Equation 51. Two
of the states represent the mean components of
the original outputs while the other two indicate
the deviation from the mean values. A 4x1 con-
trol system is formulated for this expanded model
with the feed into the first tank being the only
manipulated input.

Different control strategies can be implemented at
this point by changing the tuning parameters. Ob-
viously, for a given nonzero uncertainty in param-
eter k2, based on the PCT analysis developed in
the previous chapters it is practically impossible
to completely minimize distribution components
without shutting down the flow into the system.
In general control problems of this type a hard
input constraint can be used to eliminate this
natural optimization solution. In order to fulfill
the research goals of this work, the authors tried
to implement a control strategy that enables to
apply soft constraints on all the expanded outputs
thus decreasing the risk of process deviation from
the safety or economically reasoned bounds.

Figure 7 represents the case for which the penal-
ties in the cost function are tuned to maintain the
mean components within certain bounds, while
the components associated with uncertainty are
unbound. Figure 8, alternatively, describes the
case when only the distribution components are
bound to certain limits. A comparison between
the plots leads to a conclusion that it is possible
to slightly decrease the uncertainty in the outputs
using the proposed control methodology without
changing the parametric uncertainty of the sys-
tem.

7. CONCLUSIONS

Polynomial Chaos Theory analysis can be effec-
tively applied on nonlinear systems with uncer-
tain parameters. The main advantage of using
PCT in a time domain lies in the ability to
analytically obtain the expanded solution in a
single computational run. The expanded system
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Fig. 7. NMPC with soft constraints on the mean
component of process outputs using a first-
order PCT expanded model with one uncer-
tain parameter k2.

Fig. 8. NMPC with soft constraints on the distri-
bution components of process outputs using
a first-order PCT expanded model with one
uncertain parameter k2.

increases the number of the original states in the
system depending on the order of PCT expansion
and the number of uncertain parameters, so that
the resulting dynamic PCT expanded model pro-
vides outputs that represent mean and distribu-
tion components of the original states. Provided
the original distribution of the random variables
these components can be reorganized to represent
the original states. The multivariable expanded
solution can be used along with the proposed

Nonlinear Model Predictive Control formulation
to control the individual outputs of the PCT ex-
panded model. The use of NMPC controller can
decrease the sensitivity of the model to changes
in the uncertain parameters by applying large
penalties in the cost function on those components
that represent uncertainty. Application of soft
constraints on the PCT expanded process outputs
enables safe operation within certain bounds.
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