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Abstract: The paper presents a modification of the decentralized controller design 
technique for continuous-time systems (named “Equivalent Subsystems Method”, ESM)  
proposed in (Kozáková and Veselý, 2003; 2007) and further developed towards securing 
robust stability and nominal performance (Kozáková and Veselý, 2005; 2006). The 
proposed design procedure combines the ESM with a subsequent detuning to fulfil the M-
∆ structure robust stability conditions adapted for the decentralized control. Robust 
decentralized controllers designed for two real plants show practical applicability of the 
proposed design philosophy.  
 
Keywords: decentralized control, detuning, nominal stability, robust stability, 
unstructured uncertainty 

 
 
 

 
 

1. INTRODUCTION 
 

Many industrial processes are naturally multi-input  
multi-output (MIMO) as they arise as 
interconnection of a finite number of physically 
existing subsystems. Due to the interactions, MIMO 
systems are more difficult to control compared with 
the SISO ones. Multivariable controllers are used if 
strong interactions within the plant are to be 
compensated for. Decentralized controllers remain 
popular in the industry when practical reasons make 
restrictions on controller structure necessary or 
reasonable. Compared with centralized full-controller 
systems the decentralized control (DC) structure 
brings about certain performance deterioration; 
however weighted against important benefits, e.g. 
hardware, operation and design simplicity, and 
reliability improvement Therefore, decentralized 
control (DC) design techniques remain popular 
among practitioners, in particular the frequency 
domain ones which provide insightful solutions and 
link to the classical control theory.  
Since the 80’s several practice-oriented robust 
control design techniques have evolved 

differentiating in the design of local SISO controllers 
the main approaches being simultaneous design, 
independent design e.g. (Hovd and Skogestad, 1993; 
Kozáková, 1998) and sequential design e.g. (Hovd 
and Skogestad, 1994). The method proposed in this 
paper belongs to the independent design according to 
which local controllers are designed independently 
without considering interactions with other 
subsystems. Main advantages with this approach are 
failure tolerance and direct local designs, the main 
limitation is that information about controllers in 
other loops is not exploited; therefore obtained 
stability and performance conditions are only 
sufficient and thus conservative. 
 
The paper deals with a further improvement of the 
robust decentralized controllers design technique for 
continuous-time uncertain systems (so-called 
“Equivalent Subsystems Method” ) first proposed  as 
a DC design method for performance (Kozáková and 
Veselý, 2003) and further adapted so as to 
simultaneously guarantee nominal performance and 
fulfilment of the M-∆ structure based robust stability 
conditions modified for the closed-loop under the 
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decentralized controller (Kozáková and Veselý, 
2005; 2006; Veselý and Kozáková, 2005a; 2005b). 
This design technique considers the full transfer 
function matrix nominal system - unlike the existing 
robust DC approaches which take as nominal system 
just the diagonal part of the plant transfer matrix.     
             
The paper is organized as follows: theoretical 
background and problem formulation are given in 
Section 2, development of the robust decentralized 
controller design technique is presented in Section 3 
and illustrated by two examples in Section 4. 
Conclusions are given at the end of the paper. 
 
 

2. THEORETICAL BACKGROUND  
PROBLEM FORMULATION 

 

Consider a plant transfer function mmR)s(G ×∈ and 

a diagonal controller mmR)s(R ×∈    in a standard 
feedback configuration (Fig.1) where 

d,e,y,u,w are vectors of reference, control, 
output, control error and disturbance, respectively, of 
compatible dimensions. 
 

 

 

 
 

 Fig. 1   Standard feedback configuration 
 
Let the uncertain plant model be given as a set of N 
transfer function matrices in N different operating 
points, hence 
 

 N,,2,1k,)}s(G{)s(G mm
k
ij

k K== ×  (1) 

with m,,2,1j,i,
)s(u
)s(y

)s(G k
j

k
ik

ij K==  

where )s(y k
i is the i-th output and )s(u k

j  is the j-th 
input of the plant in the k-th experiment. 
 
In this paper, unstructured uncertainty associated 
with the system model (1) will be described using 
additive (a), multiplicative input (i) and 
multiplicative output (o) forms, generating the 
related families of plants o,i,ai,i =Π : 
 

 ( )s)s()s(G)s(G: aNa ∆Π l+=  (2) 

 )]s(G)s(G[max)s( N
k

M
k

a −= σl  
 

 ( )]s)s(I)[s(G)s(G: iNi ∆Π l+=  (3) 

)]}s(G)s(G[))s(G{(max)s( N
11k

M
k

i −= −−σl  

 

 ( ) )s(G]s)s(I[)s(G: Noo ∆Π l+=  (4) 

}))s(G)](s(G)s(G{[max)s( 1kk
NM

k
o

−−= σl   

where GN(s) denotes the nominal model, )(M ⋅σ  is 

the maximum singular value of (.) and ( ) mmRs ×∈∆  
is uncertainty matrix such that 1)(M ≤∆σ .  
Standard feedback configuration comprising the 
uncertain system can be transformed into the ∆−M  
structure; for individual uncertainty types the 
corresponding matrices Mk, k=a,i,o are as follows 
(Skogestad and Postlethwaite, 1996): 

 )s(R)]s(G)s(RI[)s(M 1
Naa

−+−= l   

 )s(G)s(R)]s(G)s(RI[)s(M N
1

Nii
−+−= l  (5) 

 1
NNoo )]s(R)s(GI)[s(R)s(G)s(M −+−= l   

 
Robust stability conditions in terms of the ∆−M  
structure are given in the following theorem. 
 
Theorem 1 (Robust stability for unstructured  
perturbations ) 
Assume that the nominal system Mk(s), k = a,i,o  is 
stable and the perturbations )( s∆ are stable. Then the 

∆−M  system is stable for all perturbations 
satisfying 1)]j([M ≤ω∆σ  if and only if 
 

  s,1)]s(M[ kM ∀<σ  (6) 

Nominal closed-loop stability of a MIMO system can 
be examined using the generalized Nyquist stability 
theorem.     
Theorem 2 (Generalized Nyquist Stability Theorem) 
The feedback system in Fig. 1 is stable if and only if  

1.  Ds0)s(Fdet ∈∀≠   
2a. qn)]s(Fdet,0[N =   

or   (7) 

2b. ∑
=

=+
m

1i
qi n)]}s(q1[,0{N  

where )s(R)s(G)s(Q N= is the open-loop matrix, 
nq is the number of its right half-plane poles,  

)]s(QIdet[)s(Fdet +=  is the closed-loop charac-
teristic polynomial, )]s(Fdet,0[N is the number of 
anticlockwise encirclements of the point (0, j0) by 
the Nyquist plot of  detF(s). m...,,2,1i),s(qi =  are 
the set of characteristic loci (CL) of Q(s) in the 
complex plane (MacFarlane and Postlethwaite, 
1977).  
 
Problem Formulation. 
Consider an uncertain MIMO system with m 
subsystems (1). A robust decentralized controller  
  m1ii sRdiagsR ,...,)}({)( ==  (8) 

s0sR ∀≠)(det  
is to be designed  with )s(Ri  being transfer function 
of the i-th local controller. The designed controller 
has to guarantee stability and an acceptable 
performance of the controlled plant within the entire 
plant operating range described using either of the 
perturbed models (2), (3) or (4). 

 
 

 R(s) GN(s) 
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3.  DEVELOPMENT OF THE ROBUST DC 
DESIGN METHOD 

 

Consider the nominal model mm
N R)s(G ×∈ split 

into the diagonal and the off-diagonal parts 
describing respectively models of decoupled nominal 
subsystems and nominal interactions )( sGm   

)s(G)s(G)s(G mdN +=  (9) 
where m,...,1iid )}s(G{diag)s(G ==  and 

Ds0sGd ∈∀≠)(det . 
Factorize the nominal closed-loop characteristic 
polynomial )s(Fdet in terms of the split nominal 
system (Kozáková and Veselý, 2003; 2007) 
 

 

[ ]{ }

)(det)(det
)(det)]()()(det[

)()()((det)(det

sRsF
sRsGsGsR

sRsGsGIsF

1

md
1

md

=
=++=

=++=
− (10) 

where )()()()( sGsGsRsF md
1

1 ++= −  (11) 
In view of (11), Theorem 2 reads as follows: 
 
Corollary 1 
A closed-loop comprising the system (9) and the 
decentralized controller (8) is stable if and only if  
 

1. 0)s(Fdet 1 ≠      Ds ∈∀  

2. q1 n)]s(Rdet,0[N)]s(Fdet,0[N =+  (12)  

 
In F1(s) in (12), )]s(G)s(R[ d

1 +−  is a diagonal 
matrix related to subsystems. Denote 
 )()()( sPsGsR d

1 =+−  (13)   

where mmi )}s(p{diag)s(P ×= . From (13) results 

 0)]s(P)s(G)s(RI d =−[+    (14) 
For individual subsystems, (14) breaks down to 

m21i0sGsR1 eq
ii ,...,,)()( ==+  (15) 

where m21ispsGsG ii
eq
i ,...,,)()()( =−=  (16) 

is transfer function of the i-th equivalent subsystem 
(Kozáková and Veselý, 2003). Substituting (13) into 
(11) we obtain 
 

)]s(G)s(Pdet[)s(Fdet m1 +=  (17) 
 

Using (17) it is possible to formulate stability 
conditions for the closed-loop system under a 
decentralized controller (Kozáková and Veselý, 
2003; 2007).  

Corollary 2 (Nominal stability under DC) 
A closed-loop comprising the nominal system (9) and 
a decentralized controller (8) is stable if there exists 
a stable matrix mmi )}s(p{diag)s(P ×=  such that 
each equivalent subsystem (16) can be stabilized by 
its related local controller Ri(s), i.e. each equivalent 
closed-loop characteristic polynomial  
 m21isGsR1CLCP eq

ii
eq

i ,...,,)()( =+=  
has stable roots and the following conditions are met  
 1. 0)]s(G)s(Pdet[ m ≠+  (18) 

 2. qm n)]}s(G)s(Pdet[,0{N =+  (19) 

Corollary 3 (Robust stability under DC) 
The ∆−M  structure is stable if there exists such 

mmi )}s(p{diag)s(P ×= that conditions (18) and (19) 
are met and for either of the uncertainty forms (2), 
(3), (4) holds the corresponding inequality: 
 

• Additive uncertainty 

)(
1})]j(G)j(P{[

a

1
mM ω

ωωσ
l

<+ −  (20) 

• Multiplicative input uncertainty 

)(
1)}s(G)]j(G)j(P{[

i
N

1
mM ω

ωωσ
l

<+ −  (21) 

• Multiplicative output uncertainty 

)(
1})]j(G)j(P)[j(G{

o

1
mNM ω

ωωωσ
l

<+ − (22) 

 
Hence, the problem to be solved in the robust 
decentralized controller design reduces to finding an 
appropriate mmi )}s(p{diag)s(P ×=  that fulfils both 
Corollaries 2 and 3. Applying this approach allows to 
consider the full mean parameter value model as the 
nominal system.  
 
Thus far, following methods of selecting P(s) have 
been proposed: 

1. Choosing P(s) = p(s)I  with identical entries in the 
diagonal. If )s(g)s(p α−−= l  where )s(gl  can 
be any fixed of the m characteristic functions of 

)]s(G[ m−  and 0≥α  is the specified feasible 
degree of stability, it is possible to achieve the degree 
of stability α  for the full closed-loop system 
(Kozáková and Veselý, 2003; 2007). Moreover, if 

)s(g)s(p α−−= l  satisfies the ∆−M  stability 
conditions for systems under a decentralized 
controller (Kozáková and Veselý, 2005b) then both 
the specified nominal performance and robust 
stability are guaranteed. To stabilize equivalent 
subsystems any graphical SISO frequency domain 
design technique can be applied independently. (e.g. 
Bode plots, Neymark D-partition method). 

Application and main results of this design approach 
are illustrated in Example 1. 
 
2. Choosing m1ii spdiagsP ,...,)}({)( == with different 
diagonal entries. In (Veselý and Kozáková, 2005a) a 
heuristic method has been proposed to find 
coefficients of stable )s(pi  such that 

)],s(G[structure)]s(p[structure ii = m,...,1i = . 
For a decentralized fixed structure (PI, PID) 
controller a design procedure has been developed 
yielding improved damping of )s(Gi . General 
suggestions for choosing P(s) are given in (Kozáková 
and Veselý, 2006): for both )s(P 1−  and )s(Gm  
stable, the necessary and sufficient closed-loop 
stability condition is )]s(P[)]s(G[ mmM σσ < .  
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Moreover, to guarantee robust stability, conditions 
(20), (21) or (22) have to be met in all cases. 
 

In this paper an innovative approach for generating 
)s(P  with different diagonal entries is proposed. Its 

underlying idea consists in generating P(s) using (13) 
and to guarantee fulfilment of conditions (18), (19), 
(20), (21) and (22) formulated in the Corollaries 2 a 3 
by local controller detuning. 
The resulting robust controller design procedure 
involves two main stages: the initial design and the 
possible redesign. Individual design steps are as 
follows: 
 
• Initial design 
1. Choice of nominal model 

)s(G)s(G)s(G mdN += , computation of and 
plotting uncertainty bounds o,i,ak,k =l  
according to (2), (3) or (4). 

2. Design of local controllers Ri(s), i =1,…, m  for   
isolated subsystems, composing the resulting 
diagonal controller in form (for 1=δ ) 

    





















=

m

m

1

1

)s(R00
00

00)s(R

)s(R

δ

δ
O  

3. Generating )s(G)s(R)s(P d
1 += −  according to 

(13). 
4. Verification of the nominal stability condition (18) 

and (19) (Corollary 2) 
5. Verification of robust stability (RS) conditions 

(20), (21), (22).  
 If any of the RS conditions is satisfied, the 

designed controller guarantees nominal stability 
and performance as well as closed-loop stability in 
the whole operating range of the plant specified by 
the N transfer functions matrices. The design 
procedure stops. 

 

• Redesign 
If robust stability conditions fail to be satisfied, 
the design procedure is to be repeated either for 
relaxed nominal performance requirements or the 

original controller mm
i

i }
)s(R

{diag)s(R ×=
δ

 is to 

be detuned using the detuning coefficients 
m,...,1i,i =δ  so as to satisfy robust stability 

conditions in the tightest possible way. 
 
According to the detuning procedure proposed in 
(Osuský and  Veselý, 2007), that }m,,1{k,k K∈δ , 
is changed (usually increased) which contributes the 
most to the fulfillment of the RS condition. Selection 
of such }m,,1{k,k K∈δ  is carried out in m  steps in 
such a way that in the i-th step }m,...,1{i ∈  just one 
particular iδ  is increased while the other remain 
unchanged and the RS condition is verified. The 

finally selected and changed }m,...,1{k,k ∈δ  is the 
one with the most significant contribution to the 
fulfillment of the RS condition. It specifies and is 
applied to the local controller to modify its 

parameters according to  
k

k )s(R
δ

. 

The design procedure is illustrated in Example 2. 
 
 
 

4. EXAMPLES 
 
Example 1  
(P(s) with identical entries in the diagonal) 
Power system stabilizers (PSS) are used to enhance 
power system damping. In (Kozáková, 2004), the 
DC design methodology proposed in (Kozáková and 
Veselý, 2003) has been applied to design PSS with 
the fixed structure transfer function 

2,1i,
1sT

sk
)s(PSS

i

i
i =

+
=  

for two generating units of the Slovak Power System. 
The linearized mathematical model of the MIMO 
system has been obtained from experiments on the 
model of the Slovak Power System. 

 









=

)s(G)s(G
)s(G)s(G

)s(G
2221

1211  

where 

04.58s6.335s94.58s599.7s
5.383s61.51s7.134s102.1)s(G

4.5s1191s52s5.27s
8.165s77.18s883.5s0097.0)s(G

257.3s5.661s76.65s24.13s
61.28s21.15s964.1s1278.0)s(G

5283s5.509s8.162s3.8s
2243s7.731s9.147s4.4)s(G

234

23

22

234

23

21

234

23

12

234

23

11

++++
−++−

=

++++
−+−

=

++++
−+−

=

++++
−++−

=

 

 
The PSS have been designed to reduce by 8.5dB the 
resonance peaks of equivalent subsystems. Local 
PSS´s for individual units have been designed using 
Bode plots of equivalent subsystems generated 
by )s(p1 . Using the standard design approach, 
parameters for both PSS have been chosen as follows  

 

2,1i
1s1.0
s0562.0)s(PSSi =

+
=  

Bode plots of compensated equivalent subsystems 
depicted in Fig. 2 with thick lines prove the required 
resonance peak reduction. Experimental studies on a 
physical model of the Slovak Power System have 
proved effectiveness of the designed PSS´s in 
improving the power system damping in the required 
frequency range. One illustrative result – response of 
the active power deviation in both generating units 
with implemented PSS to a three phase to ground 
fault during 0.2s at the middle of the transmission 
line between both units is shown in Fig. 3b 
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Fig. 2. Bode plots of equivalent subsystems G1
eq(s) and 

G2
eq(s) (thin lines – uncompensated subsystems; 

thick lines – subsystems with PSS compensation) 

 a. b. 

.  

 
 
 
 
 
 
 

 
 
 
Fig. 3  Time responses of the active power deviation in 

Unit 1 (upper plots) and Unit 2 (lower plots) to a 
three phase to ground fault during 0.2s: a. 
uncompensated subsystems; b. subsystems with 
PSS compensation.  

 
 

Example 2 
(P(s) with different diagonal entries) 
Consider the 3x3 transfer function model for a pilot 
scale binary distillation column used to separate 
ethanol and water (Hovd and Skogestad, 1994; 
Ogunnaike and Ray, 1994). A strong one-way 
interaction is evident from the large off-diagonal 
elements in the 3rd row. 
 



























++
+

++
−

+
−

+
−

+

+
−

+
−

+

=

−−−

−−−

−−−

)1s8.18)(1s89.3(
e)1s61.11(87.0

1s9.10
e2.46

1s15.8
e68.33

1s09.7
e012.0

1s5
e36.2

1s25.3
e11.1

1s06.9
e0049.0

1s64.8
e61.0

1s7.6
e66.0

)s(G
ss4.9s2.9

s2.1s3s5.6

ss5.3s6.2

 
 

Based on the RGA matrix  

 
















−−
−−
−−

=
52.123.029.0
22.088.166.0
3.065.095.1

Λ  

 
the full system has been partitioned into the diagonal 
part (subsystems) and interactions (9). A low value 
of Niederlinski index  (N = 0.3752) and a high value 
of the VA index - sufficient condition for correct 
input-output pairing (Kozáková, 1998), VA = 54.679 
(instead of preferred VA<1) indicate difficulties in 
structural controllability of the plant.  
For the design purpose, time delays have been 
replaced with the 6th order Padé approximants. 
Uncertainty bounds (2), (3) and (4) have been 
computed for %15±  changes in parameter values of 
all entries of )s(G)s(G N= . 
PID controller transfer functions for decoupled 
subsystems have been chosen  

  m,...,2,1i,
ks

rsrsr
)s(R 10

2
d

i =
++

= −  
 

where k is the common factor applied simultaneously 
in all loops in the redesign step to fulfil the robust 
stability conditions (20), (21), (22). 

The o,i,ak,
)(

1

k
=

ωl
 plots are depicted in Fig. 4,  

local controllers have been designed for the worst 
case – i.e. the multiplicative output uncertainty. 
 
 

Fig. 4   The 
)(

1

k ωl
- versus - ω plots for o,i,ak =  

 
 
Final values of local controller parameters have been 
chosen as follows 
 

  
s

0574.0s3186.0s0637.0)s(R
2

1
++

=      

      
s

)0478.0s1912.0s1593.0()s(R
2

2
++−

=  

 
s

7966.0s5490.2s1593.0)s(R
2

3
++

=  

 

Fig. 5 shows that with the chosen decentralized 
controller, the robust stability conditions are verified. 
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Fig. 5  Verification of the robust stability condition under 

the designed DC and multiplicative output 

uncertainty:  
0

0M
1

)]s(M[
l

<σ  

 
Closed-loop step responses of the nominal system for 
the reference signal [1 0 0]T are in Fig. 6, Fig. 7 
shows simulation results for unit steps applied in all 
subsystems at different step times (12s, 5s, 20s for 
the 1st, 2nd and 3rd subsystem, respectively). 
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Fig. 6  Closed-loop step responses under the designed DC 
for the reference unit step in the first subsystem 
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Fig. 7  Closed-loop step responses under the designed DC 
for the reference unit steps applied in all subsystems 
at different step times (12s, 5s, 20s) 

 
 

5. CONCLUSION 
 
In this paper an improvement to the existing robust 
decentralized controller design technique for 
continuous-time uncertain systems has been 
proposed. Applying the generalized Nyquist stability 
criterion and the M-∆ structure robust stability 
conditions adapted for the decentralized control 

structure, the problem to be solved in the robust 
decentralized controller design reduces to finding an 
appropriate mmi )}s(p{diag)s(P ×=  guaranteeing 
both nominal and robust closed-loop stability of the 
full system under a decentralized controller. 
Moreover, this approach allows considering the full 
mean parameter value model as the nominal system. 
An innovation in choosing )s(P  with different 
diagonal entries has been proposed, resulting in a 
simple-to-use insightful graphical design procedure 
that involves two main stages: in the initial design 
stage, local controllers are designed for isolated 
subsystems, the matrix P(s) is generated and the 
nominal and robust stability conditions are verified. 
If they fail to be satisfied, in the redesign stage, the 
local controllers transfer functions are modified so as 
to satisfy robust stability conditions in the tightest 
possible way. 
The proposed practice-oriented approach has been 
applied in the design of robust decentralized PID 
controllers for real plant models (a 2x2 power system 
with two generating units and a 3x3 laboratory binary 
distillation column) show practical applicability of 
the proposed design philosophy. 
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