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Abstract: This paper is focused on a library of adaptive controllers which use model 
predictive control design. The Self-Tuning Model Predictive Controllers Library  
(STuMPCoL) has been designed in the MATLAB / Simulink environment and contains 
a framework for design and testing of Model predictive control approach combined 
with on-line identification of controlled process (self-tuning control). The paper pre-
sents techniques incorporated into the STuMPCoL and describes structure of self-tunig 
model predictive controllers. Moreover, the contribution includes some results obtained 
by simulation and real-time verification of the library.   

Keywords: self-tuning control, model-predictive control, Simulink, MATLAB. 

1 INTRODUCTION 

Model Predictive Control (MPC) is one of possible 
control approaches based on model of a controlled 
system. Contrary to most other approaches, MPC is 
based on future course of inputs of control circuit. 
Then, a finite number of future control samples can 
be computed by minimizing a criterion. The compu-
tation of future control signal samples can be per-
formed in each sample steps and only the first action 
is applied to the plant. This approach is called reced-
ing horizon MPC (Kwon et al. 2005) and is used 
further in this papers. 

This paper presents a basic frame of the Self-Tuning 
Model Predictive Controllers Library (STuMPCoL). 
This library has been created to provide unified 
framework for testing and design of model predictive 
controllers for real-time application. The library is 
intended for usage by both students of process con-
trol and control engineers. 

The MPC is used to produce either control signal 
directly or setpoints for simpler controllers (e.g. PID) 
(Sunan et al. 2002). The first approach is used further 
in this paper. The computation of the controlled sig-
nal is based on a model of a controlled system. There 

are two basic approaches of obtaining system’s 
model: mathematical-physical analysis of the system 
and black box approach.  

The mathematical-physical analysis of the system 
and subsequent derivation of the relations between 
system inputs and outputs provides general model 
which can be valid for a whole range of system’s 
inputs and states. On the other hand, there is usually 
a lot of unknown constants and relations when per-
forming mathematic-physical analysis. Therefore, 
modelling by mathematic-physical analysis is suit-
able for simple controlled systems with small number 
of parameters or for obtaining basic information 
about the system (range of gain, rank of suitable 
sample time, etc.).  

The black box approach to the modelling is based on 
analysis of input and output signals of the system. 
The main advantage of this approach lies in the pos-
sibility of usage the same identification algorithm for 
different controlled systems. In addition, the knowl-
edge of physical principle of controlled system and 
solution of possibly complicated set of mathematical 
equation is not required. On the other hand, model 
obtained by black box approach is generally valid 
only for signals it was calculated from. For example, 
if only low frequency changes of input signals were 
used to obtain the model, this model need not be us-
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able for high frequency changes of input signals 
(Chalupa and Bobál 2007). 

The model of the controlled process can also be ob-
tained by on-line identification. The on-line identifi-
cation can be encapsulated into model predictive 
controller. The scheme of a simple control circuit 
with self-tuning predictive controller is shown in Fig. 
1. 

Note that the reference signal is marked as w(t). This 
means that the course of reference signal is sent to 
the controller, not only the current value w(k). Self-
tuning control is based on-line identification of con-
trolled process and controller synthesis which uses 
results from the identification. (Bobál et al. 2005) 
Thus, each self-tuning predictive controller consists 
of two relatively stand-alone parts: 

• on-line identification  

• model predictive controller 

The internal structure of self-tuning model predictive 
controller is presented in Fig. 2. The output of the 
on-line identification block – ( )ˆ kΘ  – represents 
current estimates of parameters of controlled process.  

2 ON-LINE IDENTIFICATION METHODS 

Various discrete parametric models are used to de-
scribe dynamic behaviour of controlled systems. 
Overview of these models is given in (Ljung, 2001). 
A general input-output linear model for a single-

output system with input u and output y can be writ-
ten: Self-tuning 

model 
predictive 
controller 

u(k) 
w(t) 

y(k)
 

Controlled 
system 

Fig. 1. Control circuit with Self-tuning MPC 
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where N represents the number of measurable input 
signals, ( )y t , ( )iu t  and  are output signal, 
input signals and immeasurable error signal respec-
tively and di corresponds to the delay of i-th input. 

( )n t

( )1A z− , ( )1
iB z− , ( )1

iF z− , ( )1C z−  and  are 

polynomials in the shift operator z-1. Widely used 
simplification is general model 

( 1D z− )

(1) is ARX model: 

 ( ) ( ) ( ) ( ) ( )1 1 dA z y t B z z u t n t− − −= +  (2) 

Then the transfer function of model of identified sys-
tem is assumed to be in the following form: 
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Then it is possible to write en equation for computing 
the output of the system in k-th step: 

 ( ) ( ) ( ) (Ty k k k n k= ⋅ +Θ Φ )  (4) 

where n(k) represents the influence of an immeasur-
able disturbances and the vector of the parameters of 
the controlled system model ( )kΘ  and the data vec-

tor ( )1k −Φ  are formed as follows:  

( )

( ) ( ) ( ) ( ) ( )
1 2 1 2,, ,..., , , ...,

1 ,..., , 1 ,...,

T
n m

T

k a a a b b b

k y k y k n u k u k m

⎡ ⎤=⎣ ⎦

= − − − − − −⎡ ⎤⎣ ⎦

Θ

Φ
 (5) 

The identification problem is formulated as a process 
of finding the ( )kΘ  vector with respect to some 
criterion. Exact values of parameters are unknown 
during the identification process and just the vector 
of parameter estimations is used: 

 ( ) 1 2 1 2,, ,..., , , ...,
T

nk a a a b b bm⎡ ⎤= ⎣ ⎦Θ
� � �� � � �  (6) 

On-line 
identifi-
cation 

( )ˆ kΘ  

w(t) 

 

 

Model 
predictive 
controller 

u(k-1) 

u(k) y(k) 

One step delay The aim of the identification process is then make the 
estimations ( )kΘ

�
 as close as possible to the actual 

parameters ( )kΘ . 

2.1 Recursive least squares method 

The recursive least squares method (RLSM) is based 
on minimization of sum of squares of differences 
between actual system outputs and outputs estimated 
on base of system model. If the k-th identification 
steps is performed and data corresponding to r previ-
ous system inputs and outputs are available, the crite-
rion to be minimized can be formulated as follows: 

Fig. 2. Internal structure of Self-tuning MPC 
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 ( ) ( ) ( ) ( )1
2

T
J k k k k= − −⎡ ⎤ ⎡⎣ ⎦ ⎣y y y y ⎤⎦

� �  (7) 

where y(k) is the vector of system outputs, and ( )ky�  
is the vector of system outputs estimations. With 
respect to (4), each system output estimation can be 
written as 

 ( ) ( ) ( )Ty i i k=Φ Θ
��  (8) 

The resulting equation for parameter estimations 
update is: 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1
1 T

T

k k
k k

k k k

y k k k

+ = + ⋅
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�
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and the covariance matrix is updated in each sample 
time according to the following equation:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1
1

T

T

k k k k
k k

k k k
+ = −

+

C Φ Φ C
C C

Φ C Φ
 (10) 

The covariance matrix C is usually initialized as a 
diagonal matrix with elements 103 on the main di-
agonal (Hang et al. 1993). The main diagonal of co-
variance matrix C contains dispersions of identified 
parameters an thus if the initial parameter estimations 
are known to be close to the actual values, the initial 
values of elements on the main diagonal are to be 
smaller. 

2.2 Recursive least squares method with exponential 
forgetting 

When using the least squares method, the influence 
of all pairs of identified system inputs and outputs to 
the parameters estimations are the same. This prop-
erty can be inconvenient for example when identify-
ing the system with time-varying parameters. In this 
case, it is better to use least squares method with ex-
ponential forgetting where the influence of newer 
data to the parameters estimations is greater then the 
influence of older data. The criterion to be minimized 
is in the following form: 

 ( ) ( ) ( ) ( )1
2

T
J k k k k= − −⎡ ⎤ ⎡⎣ ⎦ ⎣y y W y y ⎤⎦

� �  (11) 

where W is a diagonal weight matrix: 
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1
And the φ is a forgetting coefficient which is as-
sumed to be in range 0 ϕ< ≤ . The RLSM with 
exponential forgetting can be transferred to pure 

RLSM by selecting φ=1. The lower value of φ de-
notes more rapid forgetting of older data and thus 
smaller influence of older data to resulting parameter 
estimations. The weight the data of k-q-th step affect 
current estimates is: 

 ( ) qw k q ϕ− =  (13) 

The derivation of recursive version of the algorithm 
is similar to the derivation used for pure least squares 
method and leads to the following equation for co-
variance matrix update: 
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11
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The parameter estimations are updated in following 
way:  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
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Initial value of matrix C is recommended to be cho-
sen as a diagonal matrix with elements 103 on the 
main diagonal (Bobál et al. 2005). Choosing of coef-
ficient φ is individual and depends on the relation 
between identification sample time and speed of 
identified system but usually is taken from range 

0.90,0.99 .  

2.3 Recursive least squares method with adaptive 
directional forgetting 

The exponential forgetting method can be further 
improved by adaptive directional forgetting (Kul-
havý, 1985] which changes forgetting coefficient 
with respect to changes of input and output signals of 
identified system. Parameter estimations are updated 
using recursive equation 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

1
1

T

k k
k k
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ξ
+ = +

+
⋅

⎡ ⎤⋅ −⎣ ⎦

C Φ
Θ Θ

Φ Θ

� �

�
 (16) 

where the scalar ξ is defines as 

 ( ) ( ) ( )T k k kξ =Φ C Φ  (17) 

Covariance matrix C is updated in each identification 
step according to the following equation: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

11

1

Tk k k k
k k

k
k

ε ξ
ϕ

ε ϕ
ξ

−+ = −
+

−
= −

C Φ Φ C
C C

 (18) 

The forgetting coefficient is adapted with respect to 
courses of input and output signals according to fol-
lowing equation: 
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and the scalars ( )kυ , ( )kλ  and η  are updated in 
each identification step in the following way: 
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( ) ( ) ( )
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(20)  

Recommended initial values of identification vari-
ables are (Bobál et al. 2005): φ(0)=1, λ(0)=0.001, 
υ(0)=10-6. Initial value of matrix C should be chosen 
as a diagonal matrix with elements 103 on the main 
diagonal. Parameter ρ states expected value of forget-
ting coefficient *ϕ according to the following equa-
tion: 

 
*

*

1
2
ϕρ
ϕ
−

=  (21) 

3 MODEL PREDICTIVE CONTROL CRITERIA 

Generally, the computation of control signal of 
model predictive controller is based on minimization 
of particular criterion (Kwon et al. 2005). General 
form of the model predictive control criterion can be 
written as: 

 ( ) ( ),MPCJ f k k= ⎡ ⎤⎣e u ⎦  (22) 

where f is a scalar function of vector arguments ( )ke  

and . Vector ( )ku ( )ke  represents future control 

errors while  represents future samples of con-
trol signal: 

( )ku

  (23) 
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#
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where integer N denotes prediction horizon and Nc 
stands for control horizon. The criterion (22) is mini-
mized by finding optimal course of future control 
samples uk. The receding horizon is usually used: 

only finite number of future values is used in crite-
rion and only the first element of the obtained control 
sequence is applied to the controlled system.  

In case of proportional behaviour of the control sys-
tem, the differences between control samples are 
widely used in the criterion in stead of control sam-
ples itself: 

 ( ),MPC k kJ f= e Δu  (24) 

Several basic types of criterion are mentioned in the 
following subchapters. 

2.1 Quadratic criterion 

Quadratic criterion (Sunan et al. 2002) is the most 
often used criterion in MPC design. For single input 
single output (SISO) systems the criterion can be 
written in general form: 

 ( ) ( )T T
MPC k k k kJ k k= +e Q e Δu R Δu  (25) 

where Δu is a vector of future differences of control 
signal samples and square matrixes Q and R allows 
to set weighting of individual vector elements. Future 
outputs of the controlled system, and consequently 
control errors, are computed on base of its model. 
Control sequence is obtained by minimizing criterion 
(25). 

Most real-time application uses simple structures of 
matrixes Q and R. If a single input-single output 
model is used, the criterion (25) is sometimes simpli-
fied to the following form: 

 ( ) ( )2 2

1 1

N N

MPC
j j

J e k j u k jλ
= =

= + + ⋅ Δ +∑ ∑  (26) 

where λ states ratio between weights of control errors 
and differences of control samples.  

Process of minimizing of the criterion (25) or (26) 
can be rewritten to a quadratic programming prob-
lem: 

 ( ) ( )MPC k k kJ k= +Tu H u p uk  (27) 

where uk is a vector of future control signal samples 
to be computed. H and p are matrix and vector de-
rived from λ and model parameters. Quadratic pro-
gramming problem is usually solved numerically. 
This allows further constraints to be applied to vector 
uk. 

2.2 Linear criterion 

In case of linear criterion, the absolute values are 
used in the MPC criterion in stead of quadrates. The 
linear criterion has the following form: 

 ( ) ( )T T
MPC k kJ k k= +Q e R Δu  (28) 
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where Q and R are weight vectors of the size 
N x 1and Nc x 1respectively. The criterion is usually 
simplified to weighted sum of future control errors 
and control signal differences. 

 ( ) ( )
1 1

N N

MPC
j j

J e k j u k jλ
= =

= + + ⋅ Δ +∑ ∑  (29) 

Process of minimizing of the criterion can be rewrit-
ten to a linear programming problem: 

 ( ) ( ) ( );MPC k kJ k k= <q u A u b

Fig. 3. Simulink scheme of Self-tuning MPC 

k  (30) 

where uk is a vector of future control signal samples 
to be computed. A is a matrix and q and b are matrix 
and vector derived from λ and model parameters. 
Linear programming problem is usually solved nu-
merically, which allows further constraints to be ap-
plied to vector uk. 

2.3 Min-max criterion 

The min-max criterion was proposed to minimize the 
maximum absolute value of control error and control 
signal difference: 

( ) ( )( )
1 1

max max
N N

MPC jj j
J e k j u k jλ

= =
= + + ⋅ Δ +  (31) 

Likewise linear criterion, process of minimizing of 
the min-max criterion can be rewritten to a linear 
programming problem: 

 ( ) ( ) ( );MPC k kJ k k= q u A u b k<  (32) 

where uk is a vector of future control signal samples 
to be computed. A is a matrix and q and b are matrix 
and vector derived from λj and model parameters.  

4 THE STUMPCOL 

The Self-Tuning Model Predictive Controllers Li-
brary encapsulates identification methods and MPC 
designs presented in previous chapters. 

The models of the controlled process are mot re-
stricted to ARX. The STuMPCoL provides on-line 
identification of following model types: 

• ARX (AutoRegressive with Exogenous in-
put) 

• ARMAX (AutoRegressive Moving Average 
with Exogenous input) 

• OE (Output Error) 

These models can be identified using one of the fol-
lowing methods: 

• Recursive Least Squares Method (RLSM) 

• RLSM with exponential forgetting 

• RLSM with directional forgetting 

• RLSM with adaptive directional forgetting 

The identification function is designed for multi in-
put single output (MISO) systems. This extends the 
area of applicability of the library even to multi input 
multi output (MIMO) systems. 

The future control signal courses are computed on by 
minimizing one of following criteria: 

• Quadratic 

• Linear (sum of absolute values) 

• Min-max (minimization of maximal abso-
lute value) 

The library controllers are not restricted to single 
input single output (SISO) systems. Following com-
binations of inputs and outputs of controlled system 
are covered in the library: 

• SISO (Single Input Single Output) 

• TISO (Two Inputs Single Output) 

• TITO (Two Inputs Two Outputs) 

Additional controllers for more complicated configu-
rations can be designed by user on the basis of some 
appropriate library controller. Only standard 
MATLAB / Simulink techniques have been used 
during the library design and thus user-designed con-
trollers can be derived relatively easily. A Simulink 
scheme of an internal structure of self-tuning model 
predictive controller for the TISO controlled system 
is presented in Fig. 3. The parameters of the control-
lers are entered using just standard Simuling dialogs 
as presented in Fig. 4. 

5 SIMULATION VERIFICATION 

The controllers from the STuMPCoL have been veri-
fied by control of various Simulink models. This 
chapter presents an illustrative example of control of 
a TITO linear continuous system. 

The transfer matrix of the system was selected as: 
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Fig. 6. PS600 Inverted Pendulum system 
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⎤
⎥
⎥
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 (33) 

It can be seen that cross transfers play a great role in 
this system. Therefore it is impossible to control the 
system as two stand-alone SISO systems. The ARX 
model and RLSM with adaptive directional forget-
ting were used for on-line identification. No-apriori 
information was provided to the on-line identifica-
tion function. Control signal sequence was obtained 
by minimizing quadratic criterion. Resulting control 
courses are presented in Fig. 5. 

It can be observed that after initial phase, where pa-

rameter estimates did not represent the system behav-
iour well, a satisfactory control courses were ob-
tained  and the closed control loop behaves as an 
almost decoupled system. 

Fig. 4. Dialog for setting controller parameters 
6 REAL TIME EXPERIMENT 

The controllers from the library have been verified 
by real-time control of laboratory model. Control of 
Amira PS600 Inverted Pendulum is presented in this 
chapter. A photo of the system is shown in Fig. 6. 

The pendulum can be considered a SITO system 
where input is control voltage of cart motor and out-
puts are cart position and pendulum angle. Pendulum 
should be held in the upright position (w2=0) during 
control process. The resulting courses are presented 
in Fig. 7. 

It can be observed that pendulum was stabilized in 
upright position and the cart moved along reference 
trajectory. The oscillations of control signal are 
caused by a block for compensating the friction of 
the cart. Control signal in range 2V, 2V− does not 
cause any cart movement and thus only control sig-
nal outside this range were applied. Maximal allow-

Fig. 5. Simulation control courses 
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able range of control signal is from -10V to +10V but 
as can be seen in Fig. 7. The compensation of the 
friction was accomplished by the “Coulomb & Vis-
cous Friction” Simulink block. 

CONCLUSION 

The Self-Tuning Model Predictive Controllers Li-
brary (STuMPCoL) was introduced in the paper. The 
library contains various predictive controllers based 
on discrete linear model of the controlled system. 
The controllers are based on quadratic, linear or min-
max criterion. The controllers from the library were 
successfully used in both simulations and the real-
time control of laboratory models. The library is 
available on web pages of Tomas Bata University in 
Zlin (Chalupa, 2008). 
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