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Abstract: Model Predictive Control (MPC) refers to a class of algorithms that compute
asequence of manipulated variable adjustments in order to optimize the future
behaviour of a plant. MPC technology can now be found in a wide variety of application
areas. The neural network predictive controller that is discussed in this paper uses a
neural network model of a nonlinear plant to predict future plant performance. The
controller calculates the control input that will optimize plant performance over a
specified future time horizon. In the paper the neural network based predictive control
for the continuous stirred tank reactor is presented.
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1 INTRODUCTION

Conventional process control systems utilize linear
dynamic models. For highly nonlinear systems,
control techniques directly based on nonlinear models
can be expected to provide significantly improved
performance.

Model Predictive Control (MPC) concept has been
extensively studied and widely accepted in industry
applications. The main reasons for such popularity of
the predictive control strategies are the intuitiveness
and the explicit constraint handling.

The predictive controllers are used in many areas,
where high-quality control is required (Qin and
Badgwell, 1996; Qin and Badgwell, 2000; Rawlings,
2000). Model-based predictive control refers to a
class of control algorithms, which are based on a
process model. MBPC can be applied to such systems
as e.g. multivariable, non-minimum-phase, open-loop
unstable, non-linear, or systems with a long time
delay. Constrained model predictive control becomes
the standard algorithm for advanced control in
process industries.

Several versions of MPC techniques are Model
Algorithmic Control (MAC) (Richalet ef al., 1978),
Dynamic Matrix Control (DMC) (Cutler and
Ramaker, 1980), and Internal Model Control (IMC)
(Garcia and Morari, 1982). Although the above
techniques differ from each other in some details,
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they are fundamentally the same, all of them are
based on linear process modelling. If the nonlinear
model is available, the computational requirements
are expected to be very high (Garcia et al., 1989),
especially for nonlinear MIMO processes. It is
estimated that, in a typical commissioning project,
modelling efforts can take up to 90% of the cost and
time in implementing a model predictive controller
(Morari and Lee, 1999). There were a number of
contributions in the field issues like stability, efficient
computation, optimization, constraints and others
(Allgower and Zheng, 2000; Kouvaritakis and
Cannon, 2001; Qin and Badgwell, 2003).

The Neural Network Model Predictive Control
(NNMPC) is another typical and straightforward
application of neural networks to nonlinear control.
When a neural network is combined with MPC
approach, it is used as a forward process model for
the prediction of process output (Hunt et al., 1992;
Ngrgaard ef al., 2000).

Control of chemical reactors is one of the most
studied areas of process control. In this paper, a
neural network based predictive control strategy is
applied to a continuous-time stirred reactor with two
first-order irreversible parallel exothermic reactions.
Simulation results show that neural network based
predictive control gives promising results.

The paper is organized as follows. Section 2
describes the concept of the model-based predictive
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control. Section 3 presents the neural network
predictive control strategy and the Levenberg-
Marquardt algorithm for selecting the network
parameters. In section 4 the continuous stirred tank
reactor and Neural Network Model Predictive Control
of the reactor is described, simulation results and
comparison with PID control are presented and
discussed. Finally, in section 5 some concluding
remarks are presented.

2 MODEL-BASED PREDICTIVE CONTROL
(MBPC)

MBPC is a name for several different control
techniques. They all are associated with the same
idea. The prediction is based on the model of the
process.

Control Algorithm

Model ObJect.n'e
Function
i ) y
\A u
Reference Ontimizer Process >
Generator P

Fig. 1. Classical model-based predictive control
scheme

The target of the model-based predictive control is to
predict the future behaviour of the process over a
certain horizon using the dynamic model and
obtaining the control actions to minimize a certain
criterion, generally
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Signals y(k+j), yr(k+j), u(ktj) are j-step ahead
predictions of the process output, the reference
trajectory and the control signal, respectively. The
values N; and N, are minimal and maximal
prediction horizons and N, is the prediction horizon
of control signal. The value of N, should cover the
important part of the step response curve. The use of
the control horizon N, reduces the computational
load of the method. The parameter A represents the
weight of the control signal. At each sampling period
only the first control signal of the calculated sequence
is applied to the controlled process. At the next
sampling time the procedure is repeated. This is
known as the receding horizon concept.

The controller consists of the plant model and the
optimization block.
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Eq. (1) is used in combination with input and output
constraints:

@

The ability to handle constraints is one of the key
properties of MBPC and also caused its spread, use,
and popularity in industry.

MBPC algorithms are reported to be very versatile
and robust in process control applications.

3 NEURAL NETWORK PREDICTIVE
CONTROL

Neural networks have been applied very successfully
in the identification and control of dynamic systems.
The universal approximation capabilities of the
multilayer perceptron make it a popular choice for
modelling of nonlinear systems and for implementing
of nonlinear controllers.

The unknown function may correspond to a system
we are trying to control, in which case the neural
network will be the identified plant model.

Unknown

Function .

Error

I § ———

+

- Neural _

Network Predicted Adaptation
4 Output

Fig. 2. Neural network as a function approximator

Two-layer networks, with sigmoid transfer functions
in the hidden layer and linear transfer functions in the
output layer, are universal approximators (Figure 2).

The prediction error between the plant output and the
neural network output is used as the neural network
training signal. The neural network plant model uses
previous inputs and previous plant outputs to predict
future values of the plant output. The structure of the
neural network plant model is given in the following
figure, where u(k) is the system input, y,(k) is the
plant output, y,,(k) is the neural network model plant
output, the blocks labelled TDL are tapped delay
lines that store previous values of the input signal,
IW' is the weight matrix from input number j to
layer number i. LW/ is the weight matrix from layer
number j to layer number i.
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Layer2

Fig. 3. Structure of the neural network plant model

This network can be trained off-line in batch mode,
using data collected from the operation of the plant.

The procedure for selecting the network parameters is
called training the network. The Levenberg-
Marquardt (LM) algorithm is very efficient for
training. The LM algorithm is an iterative technique
that locates the minimum of a function that is
expressed as the sum of squares of nonlinear
functions. It has become a standard technique for
nonlinear least-squares problems and can be thought
of as a combination of steepest descent and the
Gauss-Newton method (Levenberg, 1944; Madsen et
al., 2004; Marquardt, 1963; Mittelmann, 2004,
Kelley, 1999).

When the current solution is far from the correct one,
the algorithm behaves like a steepest descent method:
slow, but guaranteed to converge. When the current
solution is close to the correct solution, it becomes a
Gauss-Newton method.

Let f'be an assumed functional relation which maps a
parameter  vector peR™ to an  estimated
vector x=£(p|,xeR". An
parameter estimate p, and a measured vector x are

provided and it is desired to find the vector p* that
best satisfies the functional relation f; i.e. minimizes

the squared distance el e with e=x— X . The basis
of the LM algorithm is a linear approximation to f'in
the neighbourhood of p. For a small 16 p||, a Taylor
series expansion leads to the approximation
f(p+5p)~flpi+J5p where J is the Jacobian

measurement initial

matrix 2f—'[)] Like all non-linear optimization
4

methods, LM is iterative: initiated at the starting point
Po, the method produces a series of vectors p,, po, ...,
that converge towards a local minimizer p* for f.

Hence, at each step, it is required to find the 6 p that
minimizes the quantity [le—J6 p”- The sought O PRt
thus the solution of a linear least-square problem: the
minimum is attained when JO p € is orthogonal to
the column space of J. This leads to JT(Jﬁp—e)=0,

which yields 6 p as the solution of the normal
equations:

JTJGDZJTe. 3)

428

The matrix J7J in the left hand side of Eq. (3) is the
approximate Hessian, i.e. an approximation to the
matrix of second order derivatives. The LM method
actually solves a slight variation of Eq. (3), known as

the augmented normal equations N6p =JTe,

where the off-diagonal elements of /V are identical to
the corresponding elements of J7J and the diagonal
elements are given by N =p+ [J Ty Li for some u>
0. The strategy of altering the diagonal elements of
JTJ is damping and u is referred to the damping term.
If the updated parameter vector pto p Wwith 6 »

computed from Eq. (3) leads to a reduction of the
error e, the update is accepted and the process repeats
with a decreased damping term. Otherwise, the
damping term is increased, the augmented normal
equations are solved again and the process iterates
until a value of 0 p that decreases error is found.

In LM, the damping term is adjusted at each iteration
to assure a reduction in the error e. The LM algorithm
terminates when at least one of the following
conditions is met:

1. The magnitude of the gradient of e’e, i.e. JTe in
the right hand side of Eq. (3), drops below a
threshold &;.
The relative change in the magnitude of 6 p
drops below a threshold &,.

3. Theerror e’e drops below a threshold &;.

4. A maximum number of iterations £k, is

completed.

If a covariance matrix Z for the measured vector x
is available, the minimum is found by solving a

weighted least squares problem defined by the
weighted normal equations

VDI IEVED I ©)

4 SIMULATIONS AND RESULTS

4.1 Chemical reactor

Consider a chemical reactor (Vasickaninova and
Bakosova, 2005; Vasi¢kaninova and BakoSova,
2006) with first-order irreversible parallel reactions

k k
. 1 2
according to the scheme 4 B 4 C .The
— —
measured output is temperature of the reaction

mixture.
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Fig. 4. Jacketed continuous stirred tank reactor

The simplified non-linear dynamic mathematical
model of the chemical reactor consists of five
differential equations:

dc
4 _ 94 q
oy Sy Ca ke mhyey )
dc
B _4q q
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dc
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The reaction rate coefficients are non-linear functions
of the reaction temperature being defined by the
Arrhenius relations

E, E
_,  RT , _ “rr (10)
ky=kyge ky=kae
The heat generated by chemical reactions is

expressed as
O, =kje V(=4 H |+kyc V(=4 H,y| (11)

Here, ¢ are concentrations, T are temperatures, } are
volumes, r are densities, Cp are specific heat
capacities, g are volumetric flow rates, AH are
reaction enthalpies, 4 is the heat transfer area, £ is the
heat transfer coefficient. The subscript ¢ denotes the
coolant, r the reacting mixture and the superscript s
denotes the steady-state values in the main operating
point. Parameters and inputs of the reactor are
enumerated in Table 1.

Table. 1. Reactor parameters and inputs

Variable Unit Value
q m’min’' 0.015
\% m’ 0.23
Ve m’ 0.21
o kg m™ 1020
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Variable Unit Value

Pc kg m® 998

G, Kkl kg K 4.02

Coe kJ kg K 4.182

A m 1.51

k kJ m? min" K 42.8

Kio min’! 1.55.10"
<) min” 4.55.10%
EI/R K 9850
E2/R K 22019
AH; kJ kmol ™! -8.6.10*
AH, kJ kmol™ -1.82.10*
Cav kmol m™ 4.22

Chv kmol m™ 0

Cov kmol m™ 0

v, K 328

Uy K 298

q’e m’ min™ 0.004

T K 363.61
TS, K 350.15
Ca kmol m™ 0.4915
c’s kmol m™ 2.0042
Se kmol m™ 1.7243

The reactions in the described reactor are exothermic
ones and the heat generated by the chemical reactions
is removed by the coolant in the jacket of the tank.
The control objective is to keep the temperature of
the reacting mixture close to a desired value.

4.2 Neural Network Model Predictive Control

The controller uses a neural network model to predict
future plant responses to potential control signals. An
optimization algorithm then computes the control
signals that optimize future plant performance. The
neural network plant model is trained off-line, in
batch form, using any of the training algorithms. The
controller, however, requires a significant amount of
online computation, because an optimization
algorithm is performed at each sample time to
compute the optimal control input.

The model predictive control method is based on the
receding horizon technique. The neural network
model predicts the plant response over a specified
time horizon. The predictions are used by a numerical
optimization program to determine the control signal
that minimizes the following performance criterion
over the specified horizon.

Ny

Tliulkcll= 3 (v, lktj)=, et +
=
v (12)
A lu (=1 (k+j—2))

=1
where N;, N,, and N,, define the horizons over which

the tracking error and the control increments are
evaluated. The u' variable is the tentative control
signal, y, is the reference response, and y,, is the

network model response. The A value determines the
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contribution that the sum of the squares of the control Table 4: Comparison of the simulation results by
increments has on the performance index (Demuth integrated absolute error and integrated square error.
and Beale, 2002). The controller block is - -
implemented in Simulink. Constraints and parameters control method lae 1se
values: 0 < u < 0.02, 354 < Yp = 365, N=1, N, predictive control 174 707
=7 N,=3 A=035.

PID controller 219 770
Controller
. Ym |
¥ ' !
»  Optimization ": Neuralé[oN;etIVork - 5 CONCLUSIONS
" Y In this paper, a neural network based predictive
__-. control strategy is applied to a continuous-time stirred
reactor with two first-order irreversible parallel
exothermic reactions. Chemical reactors with
Fig. 5. Neural Network Predictive Control exothermic reactions represent the most dangerous
) operational units in the chemical industry. The
The feedback PID controllers were tuned by various simulation results confirmed that neural network
methods (Ogunnaike and Ray, 1994) and the best based predictive control is one of the possibilities for
s1mu1at19n results were obtained yv1th PID controll.er successful control of CSTRs. The advantage of this
tuned using Chien-Hrones-Reswick method and its approach is that it is not linear-model-based strategy
parameters are Kc= -0.003, T; = 16.8, Tp=1.41. and the control input constraints are directly included
In Figure 6 the predictive control of the reacting to the sythesis. Cpmparison of the MBPC simulation
mixture temperature in comparison with PID control result§ with classical PID cgntrol demonstrates the
and the reference trajectory are shown. effectiveness and superiority of the proposed
approach.
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