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Abstract: In many chemical engineering applications the extended Kalman filter (EKF) 
is often used to deal with certain classes of nonlinear systems. This paper compares ba-
sic and polynomial approach of EKF for parameters estimation of nonlinear continuous-
time stochastic systems. The proposed approaches are used to estimate constants k11 and 
k22 for interacting tank-in-series process and frequency factor k0 and temperature of re-
action mixture ϑ for continuous stirred-tank reactor (CSTR). 
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1 INTRODUCTION 

Parameter estimation is one of the steps involved in 
the formulation and validation of a mathematical 
model and refers to the process of obtaining values 
of the parameters from the matching of the model-
based calculated values to the set of measurements 
(data). (Englezos et al. 2001) 

Many papers have studied parameters estimation 
using various techniques. In (Hernández-Barajas et 
al. 2009) comprehensive approach to estimate kinetic 
parameters when the involved reactions contain 
lumped chemical species is presented. This approach 
is based on representing rate constants with a con-
tinuous probability distribution function. In (Cheng 
1996) simultaneously both heat transfer and kinetic 
parameters estimation under reacting conditions in a 
single tube wall-cooled fixed-bed reactor, and a two-
stage parameter estimation was developed. The ad-
vantages of using maximum-likelihood estimators 
rather than simple least-squares estimators for the 
problem of finding unsaturated hydraulic parameters 
were demonstrated in (Hollenbeck et al. 1998). In 
(Esposito et al. 1998) global optimization approach 
tailored to the error-in-variables parameter estimation 
problem for nonlinear algebraic model was pre-
sented. A modified genetic algorithm to solve the 

parameter identification problem for nonlinear digital 
filter was used in (Leehter et al. 1994). Model esti-
mation using fast orthogonal search is presented in 
(Eklund et al. 2007). 

In this work we apply basic and polynomial ap-
proaches of EKF to estimate constants k11 and k22 for 
interacting tank-in-series process and frequency fac-
tor k0 and temperature of reaction mixture ϑ for con-
tinuous stirred-tank reactor and compare their per-
formance. 

2 THE CONTINUOUS-TIME EXTENDED 
KALMAN FILTER 

Consider the following general nonlinear system 
model (Simon 2006): 
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where f(·) and h(·) are general nonlinear functions. 
The noise processes w and v are white, zero-mean, 
uncorrelated, and have known covariance matrices Q 
and R. Equation (1) is expanded using Taylor series 
around a nominal control u0, nominal state x0, nomi-
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nal output y0, and nominal noise values w0 and v0. 
This gives the following approximately correct linear 
system 
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The Δ quantities in the above equations are defined 
as deviations from the nominal trajectory: 
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We assume that the control u(t) is perfectly known, 
so that u0(t) = u(t) and Δu(t) = 0. The matrices on the 
right side of (2) are given as 
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The Kalman filter equations for the linearized Kal-
man filter are 
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where P is equal to the covariance of the estimation 
error. 

Now we will extend the linearized Kalman filter to 
directly estimate the states of a nonlinear system and 
linearize the nonlinear system around the Kalman 
filter estimate. This is the idea of EKF.  

Combine the  in equation (4) with  the expres-
sion in equation (6) to obtain 

0x& x&̂Δ
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. Then equation (7) becomes 0x =)(ˆ t&Δ
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Compute the following matrices: 
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Execute the following Kalman filter equations: 
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where the nominal noise values are given as w0 = 0 
and v0 = 0. 

This is the basic approach of EKF where Kalman 
gain matrix K design is based on covariance matrix 
of estimation error P obtained from differential Ric-
cati equation. 

Now we will derive the polynomial approach of 
EKF. Kalman gain matrix K design is based on solu-
tion of the Diophantine equation. 

Matrix transfer functions of the observable system 
(Mikleš et al. 2007) are given as 

  (12) )()()( 11 sss LsL BAAIC −− =−

where AL, BLs are left coprime polynomial matrices 
and AL is row reduced. 

If the gain matrix K exist, it is unique and of the form 

  (13) 1−= RR XYK

Then XR and YR are solution of the Diophantine 
equation 

 )()()( sss LRLsRL OYBXA =+  (14) 

OL(s) is a stable polynomial matrix with 
0)(det ≠sLO  and is given from spectral factoriza-

tion as follows. Adding sP to either side of algebraic 
Riccati equation (assuming, that the noise processes 
have known covariance matrices Q and R = I) 

  (15) QCPPCPAAP −=−+ TT

gives 

  (16) CPPCQAIPPAI TTss −=−−+− )()(

Multiplying from left by and from right 
by and using (11), (12) yields 

1)( −− AIC s
TTs CAI 1)( −−−

  (17) 
)()()()(

)()()()(

ssss

ssss
TT

TTT

−=−+

+−+

LsLsLsLs

LLsLsL

QBBBKKB

KABBKA

The continuous-time EKF can be summarized as 
follows: Adding  to either side of this equation 

gives 
)()( ss T −LL AA

Compute the following partial derivative matrices 
evaluated at the current state estimate: 
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Inlet flow rate q0 is independent of tank states 
whereas q1 depends on the difference between liquid 
heights )()()()(
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Then matrix OL(s) can be found from the spectral 
factorization equation  
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3 PARAMETER ESTIMATION 

In order to estimate the parameters θ, we first aug-
ment the state with the parameters as extra states 
with no dynamics to obtain an augment state vector 
(Simon 2006): 
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Our augment system model can be written as 
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Note that ),,,~(~ twuxf
x

 is a nonlinear function of the 
augmented state ~ .  

We can therefore use an extended Kalman filter to 
estimate . x~

4 MATHEMATICAL MODELLING 

4.1 Interacting tank-in-series process 

We consider (Mikleš et al. 2007) the interacting 
tank-in-series process shown in Fig. 1. The process 
input variable is the flow rate q0. 

 

 
Fig. 1. An interacting tank-in-series process. 

The process state variables are heights of liquid in 
tanks h1, h2. Assuming that liquid density, F1 and F2 
are constant, mass balance for the process yields 
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 21111 hhkq −=  (24) 

Outlet flow rate q2 depends on liquid height in the 
second tank 

 2222 hkq =  (25) 

Substituting q1 from equation (24) and q2 from (25) 
into (22) and (23) we get  
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with arbitrary initial conditions 

  (27) 
202

101

)0(
)0(

hh
hh

=
=

To estimate constants k11 and k22, two more equations 
are needed 
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Equations (18) and (20) are now nonlinear system 
model for parameters estimation. 

According to (9) 
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Parameters of the interacting tank-in-series process 
are shown on Table 1. 

To estimate the temperature of reaction mixture ϑ 
and frequency factor k0, one more equation is needed 

q0 1 m3 h-1 

k11 0.8 m5/2 h 

k22 1.5 m5/2 h 

F1 0.8 m2 

F2 0.8 m2 

Tab. 1. Parameters of the interacting tank-in-series 
process. 

4.2 Continuous stirred-tank reactor 

We consider CSTR (Mikleš et al. 2007) with a sim-
ple exothermal reaction A→B (Fig. 2.). 

 
Fig. 2. A nonisothermal CSTR. 

For the development of a mathematical model of the 
CSTR, the following assumptions are made: ne-
glected heat capacity of inner walls of the reactor, 
constant density and specific heat capacity of liquid, 
constant reactor volume, constant overall heat trans-
fer coefficient, and constant and equal input and out-
put volumetric flow rates. As the reactor is well-
mixed, the outlet stream concentration and tempera-
ture are identical with those in the tank. 

A mass balance of component A can be expressed as  
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The rate of reaction is strong function of concentra-
tion and temperature (Arrhenius law) 
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Heat balance gives 
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Initial conditions are 
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Equations (31), (33) and (35) are now nonlinear sys-
tem model for parameters estimation.  

According to (9) 
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Parameters of the reaction and reactor are shown on 
Table 2. 

cAV 1.2 kmol m-3 

cP 4.05 kJ kg-1 K-1 

E 107280 kJ kmol-1 

F 6.08 m2 

k0 7.93e15 min-1 

V 1.7 m3 

ΔH -150000 kJ kmol-1 

q 0.2 m3 min-1 

R 8.314 kJ kmol-1 K-1 

α 41.2 kJ m-2 min-1 K-1 

ϑC 318 K 

ϑv 313 K 

ρ 998 kg m-3 

Tab. 2. Parameters of the reaction and reactor. 
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June 9–12, 2009, Štrbské Pleso, Slovakia Po-We-6, 106.pdf

216



4 SIMULATION RESULTS 
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For the tank-in-series process parameters estimation 
simulation, the following values were tracked: 
q0(t) = 1 m3.h-1 for t < 0 h and q0(t) = 1.1 m3.h-1 for 
t ≥ 0 h. Initial condition for estimated parameters: 
k11 = 1 m5/2h, k22 = 1 m5/2h. True values of parame-
ters are: k11 = 0.8 m5/2h and k22 = 1.5 m5/2h. Fig. 3,4 
show the estimation results for tank-in-series process. 
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Fig. 5. Estimation of the temperature of reaction   
mixture ϑ. 
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Fig. 3. Estimation of the k11 constant. 
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Fig. 6. Estimation of the frequency factor k0. 

 

The estimation of parameters and states is carried out 
in presence of noise. Because there is no general rule 
for the choice of the matrix Q , it was chosen ex-
perimentally in order to ensure its positive definition 
(diagonal matrix). From the results it is observed that 
both presented approaches give very high accuracy 
of parameters estimation. But we can see that the 
performance of polynomial approach algorithm is 
higher then the performance of basic approach algo-
rithm, because the true values of parameters are 
reached faster. 

Fig. 4. Estimation of the k22 constant. 

 

For the CSTR parameters estimation simulation, the 
following values were tracked: cA0(t) = 1.2 kmol.m-3 
for t < 0 h and cA0(t) = 1.15 kmol.m-3 for t ≥ 0 h. Ini-
tial condition for estimated parameters: ϑ = 320 K, 
k0 = 7x1014 min-1. Fig. 5,6 show the estimation re-
sults for CSTR. True value of parameter k0 is 
7.93x1015 min-1. 

5 CONCLUSION 

In this paper, parameters estimation of nonlinear con-
tinuous-time stochastic system using continuous-time 
extended Kalman filter (EKF) is presented. Basic and 
polynomial approach of Kalman gain matrix K de-
sign was used to estimate constant k11 and k22 for 
interacting tank-in-series process and frequency fac-
tor k0 and temperature of reaction mixture ϑ for con-
tinuous stirred-tank reactor. 

17th International Conference on Process Control 2009
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