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Abstract: Paper deals with dynamic mathematical model of an ideal differentially steered drive system 
(mobile robot) planar motion. The aim is to create model that describes trajectory of a robot’s arbitrary 
point. The trajectory depends on supply voltage of both drive motors. Selected point trajectory 
recomputation to trajectories of wheels contact points with plane of motion is a part of the model, too. The 
dynamic behaviour of engines and chassis, form of coupling between engines and wheels and basic 
geometric dimensions are taken into account. The dynamic model will be used for design and verification 
of a robot’s motion control in MATLAB / SIMULINK simulation environment. 

 

1. INTRODUCTION 

Paper deals with dynamic model of an ideal mobile robot 
with differentially steered drive system and planar motion. 
Single-axle chassis or caterpillar chassis is mostly used in 
case of small mobile robots (Novák 2005). Caster wheel is 
added to single-axle to ensure stability. This solution together 
with independent wheel actuation allows excellent mobility 
on the contrary to a classic chassis – see commercially 
available robot in Fig. 1. Derived mathematical model comes 
from lay-out, nominal geometric dimensions and other 
features of that robot with view of ideal behaviour of 
individual components and some simplifying assumptions. 
The aim is to create model based on forces caused by engine 
moments of independent wheel drives. Model will consist of 
dynamic behaviour description of chassis and in series 
connected DC motors. Presented motion model based on 
centre of mass (primary element) dynamics is different from 
models reflecting kinematics only and commonly used in 
literature – published e.g. in (Stengel 2010) or (Lucas 2010). 
Standard models describe robot’s trajectory time evaluation 
depending up to known wheel speed (information from wheel 
speed sensors) and chassis geometry - odometry – published 
e.g. in (Winkler 2010). Our model extends standard model 
with dynamic part describing wheel speed dependency on 
motor supply voltage by respecting dynamics, construction, 
geometry and other parameters of chassis and motors. 
Motor supply voltage actuating the wheel causes driving 
torque and thereby wheel rotation. Inertial and resistance 
forces act against driving torque. Both driving torques 
influence each other because of these forces. Planar 
curvilinear motion of the robot is result of various time 
variant wheel rotation speeds. 
Planar curvilinear motion can be decomposed to a sum of 
linear motion (translation) and rotation motion. Forces 
balance is starting point for the derivation of motion 
equations. If F is actual force acting to a mass point with 

weight m and with distance r from axis of rotation then it 
holds for general curvilinear motion that vector sum of all 
forces acting to a selected point is zero - see literature (Horák 
et al. 1976) 
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Application of this general equation requires specification of 
individual forces according to actual conditions and/or 
eventually implementing other acting forces. We will 
consider forces originated by motion of real body – induced 
with resistances (losses) in addition to curvilinear motion 
forces. 

Fig. 1 Differentially steered mobile robot 

 
We will approximate these forces in simplest manner to be 
proportional to a speed. Equations describing dependences of 
translation and rotation speed of selected chassis point to 
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actual wheel motor voltages will be result of the dynamic 
part. 

Fig. 2 Equivalent circuit of motor 

Selection of the point where actual translation and rotation 
speed will be evaluated influences significantly initial 
equations and hence complexity of the resulting model. If the 
selected point is centre of gravity then initial equations of 
dynamic part are simplest but equations describing 
dependencies between wheel speeds and translation and 
rotation speed are more complicated. Centre of the join 
between wheels is used as the selected chassis point in 
common literature. Such a choice leads to simplest 
recalculation of actual wheel speeds to motion equations of 
that point. Trade-off between these two approaches is chosen 
in our paper – point as centre of gravity projection to join 
between wheels is selected. Trajectory (time course) 
computation of another chassis points (points where wheels 
meet the ground) supplements dynamic part of the model. 

2. MATHEMATICAL MODEL 

Described mobile robot is driven by two DC motors with 
common voltage source and independent control of each 
motor. Motors are connected with driving wheels through 
gear-box with constant gear ratio. Ideal gear-box means that 
it reduces linearly angular speed and boosts the moment 
(nonlinearities are not considered). Loses in motor and also in 
gear-box are proportional to rotation speed. Chassis is 
equipped with caster wheel with no influence to chassis 
motion (its influence is included in resistance coefficients 
acting against motion). 
Model of the robot consists from three relatively independent 
parts. Description of the ideal DC motors connected in series 
is given in chapter 2.1. Two equations describe dependency 
of the motor rotation speed and current on power supply 
voltage and loading moment related to chassis dynamics. 
Motion equations are presented in chapter 2.2 – dependency 
between translation and rotation speed of the selected point 
on moments acting to driving wheels. Chapter 2.3 is 
dedicated to equations describing how motor speed 
influences translation and rotation speed of the selected point 
and to complete model formulation. In last chapter 2.4 the 
model is transformed to simpler form which is more suitable 
for next using and for trajectory of arbitrary point calculation. 
Equations describing trajectory corresponding to contact 
points of the driving and caster wheels with the ground are 
formulated. 

2.1 DC motor in series connection dynamics 

Equivalent circuit of ideal DC motor in series connection 
(Poliak et al. 1987) is in Fig. 2. It consists from resistivity R, 
inductance L and magnetic field of the motor M. Commutator 
is not considered. Rotor produces electrical voltage with 
reverse polarity than source voltage – electromotive voltage 
UM, which is proportional to rotor angular velocityω. 
Twisting moment of the rotor MM is proportional to current i.  
Ideal behaviour means that whole electric energy used to 
magnetic field creating is transformed without any loses to 

mechanical energy – moment of the motor. We do not 
consider loses in magnetic field but only electric loses in 
winding and mechanical loses proportional to rotor speed. 
Firs equation describes motor behaviour through balancing of 
voltages (Kirhoff’s laws) 

 ωKU
dt
diLRiUUUU MLR −=+−=+ 00 ,  (2) 

where 
R  [Ω] is motor winding resistivity, 
L  [H] is motor inductance, 
K [kg.m2.s-2.A-1]  is electromotoric constant, 
U0  [V] is source voltage, 
ω  [rad.s-1]   is rotor angular velocity and 
i [A] is current flowing through winding. 
Second equation is balance of moments (electric energy) – 
moment of inertia Ms, rotation resistance proportional to 
rotation speed (mechanical loses) Mo, load moment of the 
motor Mx and moment MM caused by magnetic field which is 
proportional to current 
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where 
J  [kg.m2] is moment of inertia, 
kr  [kg.m2.s-1] is coefficient of rotation resistance and 
Mx  [kg.m2.s-2] is load moment. 

2.2 Chassis dynamics 

Chassis dynamics is defined with vector of translation speed 
vB acting in selected chassis point and with rotation of this 
vector with angular velocity ω

B

BB (constant for all chassis 
points). It is possible to calculate trajectory of arbitrary 
chassis point from these variables. Point B for which the 
equations are derived is centre of gravity normal projection to 
join between wheels – see Fig. 3. This leads according to 
authors to simplest set of equation for whole model. We 
consider general centre of gravity T position – usually it is 
placed to centre of the join between wheels. 
We consider forces balances as starting equations. It is 
possible to replace two forces FL and FP acting to chassis in 
left (L) and right (P) wheel ground contact points with one 
force FB and torsion moment MB BB acting in point B. Chassis is 
characterized with semi-diameter of the driving wheels r, 
total weight m, moment of inertia JT with respect to centre of 
gravity located with parameters lT, lL, lP. 
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Fig. 3 Chassis scheme and forces 

Let us specify equation (1) for our case. Position of the centre 
of gravity is constant with respect to axis of rotation so we do 
not need to consider Coriolis force. We have to consider 
Coriolis force for example if the chassis moves on rotating 
surface. 
Similarly we do not consider centrifugal force – chassis is 
supposed to be solid body represented as mass point (centre 
of gravity). Because force vector causing the movement acts 
in point B and goes through centre of gravity it is enough if 
we consider inertial force by linear motion. By rotational 
motion it is necessary to consider moment caused with 
Euler’s force because the axis of rotation does not go through 
the centre of gravity. 
By the balance of forces causing linear motion we will 
consider except of forces FL, FP caused by drives and inertial 
force FS also resistance force FO proportional to speed vB. 
The balance of forces influencing linear motion is 

B
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dt
dvmvk
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where 
m [kg]  is robot mass, 
kv  [kg.s-1] is resistance coefficient against linear motion 
MGL  [kg.m2.s-2] is moment of the left drive, 
MGP  [kg.m2.s-2] is moment of the right drive, 
vB  [m.s ]  is linear motion speed and B

-1

r  [m]  is semi-diameter of the wheels. 
Balance of moments is slightly more complicated because the 
rotation axis does not lie in centre of gravity. That’s why it is 
necessary to take into account except chassis momentum MT 
also moment ME = lT FE caused by Euler’s force FE. Similarly 
as by linear motion we will consider moment MO caused with 

resistance against rotation to be proportional to angular 
velocity ωB. B
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where 
lP  [m]  is distance of the right wheel from point B, 
lL  [m]  is distance of the left wheel from point B, 
lT  [m] is distance of the centre of gravity from point 

B, 
kω  [kg.m2.s-1] is resistance coefficient against rotary 

motion 
JT  [kg.m2]  is moment of inertia with respect to rotation 

axis in centre of gravity and 
ωB  [s-1] is angular speed in point B. 
Resulting moment of inertia JB with respect to rotation axis in 
point B is given by eq. (6) which is parallel axis theorem or 
Huygens-Steiner theorem - see e.g. (Horák et al. 1976) 

B

  (6) 2
TTB mlJJ +=

where 
JT  [kg.m2]  is moment of inertia with respect to centre of 

gravity and 
lT  [m]  is distance between centre of gravity and 

point B. 

2.3 Relationship between rotation speed of the motor and 
centre of gravity chassis movement (kinematics) 

The equation describing the behaviour of the two motors 
(currents and angular velocity) and the behaviour of the 
chassis (the speed of the linear movement and speed of the 
rotation) are connected only through moments of engines. 
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Equations express the law of conservation of energy which is 
conversion of electrical energy to mechanical including one 
type of losses but represent only one relationship between the 
speed of the two motors (peripheral speed of the drive 
wheels) and rates of movement and rotation of the chassis. 
Additional relation is given by design of the drive and 
chassis. We expect that both drive wheels are firmly linked to 
rotors of relevant engines over ideal gearbox with gear ratio 
pG - without nonlinearities and any flexible members. 
Gearbox decreases output angular velocity ωGx with relation 
to the input angular speed ωx according to the transmission 
ratio pG and simultaneously in the same proportion increases 
output torque MGx with relation to the input torque Mx. 

 
G

P
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L
GL pp

ωωωω ==  (7a) 

  (7b) PGGPLGGL MpMMpM ==

Further we assume that both drive wheels have the same 
radius r and their peripheral speeds vL, vP depend on the angle 
speeds of gearbox output ωGL, ωGP according to relations 
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To determine the value of the linear speed in point B and the 
angular velocity of rotation let us start from Figure 4. We 
expect that both drive wheels have the same axis of rotation 
and therefore their peripheral speeds are always parallel. The 
illustration shows the positioning where the peripheral speeds 
vL and vP actually operate (driving wheels L and P) and the 
point B. We want to specify such a linear vB and angular ωB B 
speeds that have the same effect as the action of the 
peripheral speed of the driving wheels. By using the 
similarity of triangles depicted in Figure 4 we can recalculate 
the peripheral speeds of the wheels vL, vP to the speed vBB in 
point B according to relation (8a) and the angular velocity of 
rotation ωB according to the relation (8b) B
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2.4 Trajectory calculation of the arbitrary chassis points 

We can determine from linear speed of vB and angular speed 
ω

B

B (motion equations) current rotation angle α of the chassis 
and the current position (the coordinates xBB, yB) of point B 
(Šrejtr 1954) according to relations  

B

 Bdt
d

ω
α

=  (9a) 

 )cos(αB
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=  (9b) 

 )sin(αB
B v

dt
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=  (9c) 

To determine the current position of the contacts of all three 
chassis wheels (points L, P and K) with ground we need to 
know the location of these points in relation to point B. This 
location is shown in Figure 5. From geometric dimensions we 
determine equation describing the relative position of these 
points in relation to point B depending on the angle of 
rotation. 

)  (8b) 

Relative positions ΔxL, ΔyL of the point L and ΔxP, ΔyP of the 
point P depending on angle of rotation α are given by 
  (10a) )cos()sin( αα LLLL lylx −=Δ−=Δ

  (10b) )cos()sin( αα PPPP lylx +=Δ+=Δ

To determine the relative position ΔxK, ΔyK of the 
point K we use an auxiliary right triangle specified by 
cathetus c and hypotenuses a and lK (see Figure 5). 
Then the equations for relative coordinates of the point 
K calculating are 
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Fig. 4 Linear and angular speeds recalculations 

Fig. 5 Arbitrary chassis point recalculation 
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2.5 Overall model and steady-state 

The dynamic part of the model consists from four differential 
equations describing the behaviour of both motors, two 
differential equations describing the dynamics of the chassis 
and two algebraic equations with dependency of linear and 
angular chassis speed on the peripheral speeds of the driving 
wheels. We can find in these equations eight state variables 
describing the current state of the left motor (current iL, 
angular velocity of the rotor ωL, loading moment ML) and the 
right motor (current iP, angular velocity of the rotor ωP, 
loading moment MP) and the movement of the chassis (linear 
speed vB and angular velocity of rotation ωB B). All the state 

variables are dependent on the time courses of the power of 
the left UL and right UP motor. 
Each motor has its own power supply voltage (UL, UP) 
disbranched from the common source of voltage U0. Control 
of the supply voltage of both motors using amplifier with 
control signal ux is shown in Figure 6. Because both engines 
are powered from the common source it will be taken into 
account also effect of the internal resistance Rz. Both motors 
are considered with the same parameters. We can write with 
using the equations (2) and (3) and Figure 6 four differential 
equations describing the behaviour of both engines as 

 ( ) LL
L

PLzL KUu
dt
diLiiRRi ω−=+++ 0  (11a) 

 ( ) PP
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diLiiRRi ω−=+++ 0  (11b) 
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Differential equations (4) and (5) describing the behaviour of 
the chassis complete the dynamic model. We can rewrite 
these equations with respect to the equations (7) and 
introduction of the "reduced" radius of the wheel rG and total 
moment of inertia JB (13a) as B
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It is possible to rewrite the last two algebraic equations (8a) a 
(8b) describing the dependence between rotations speed of 
both motors and chassis movement with using the 
substitution (13a) as 
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Fig. 6 Motors wiring 
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These six differential equations (11a,b), (12a,b), (13b,c) and 
two algebraic equations (14a,b) containing eight state 
variables representing a mathematical description of dynamic 
behaviour of ideal differentially steered mobile robot with 
losses linearly dependent on the revolutions or speed. Control 
signals uL and uP that control the supply voltages of the 
motors are input variables and the speed of the movement vB 
and speed of rotation ω

B

BB are output variables. From them 
with using the equations (9a) – (9c) we can determine the 
current coordinates of a point B and the angle of rotation of 
the chassis. 
In the following calculation of steady-state values for 
constant engine power voltages is given. Calculation of 
steady-state is useful both for the checking of derived 
equations and secondly for the experimental determination of 
the values of the unknown parameters. Because the equation 
(11)-(14) are linear with respect to state variables the 
calculation of steady-state leads to a system of eight linear 
equations which we can write in matrix form as 
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2.6 Computational form of the model 

A mathematical model will be used in particular for the 
design and simulation validation of control movement of the 
robot. Model can be divided into three series-involved parts 
as shown in Figure 7. From the control point of view action 
variables are signals uL a uP that control the supply voltage of 
the motors. Momentary speed vB and speed of rotation ωB BB are 
output variables from linear part of the model. These 
variables are the inputs to the consequential non-linear part of 
the model, whose outputs are controlled variables - the 
coordinates of selected point position xB, yB BB and the rotation 
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angle of the chassis α. The last part is the calculation of 
coordinates of the position of arbitrary points of the chassis. 
We can modify linear part of the model into simpler form for 
control design purposes – to reduce number of differential 
equations from six to four. If we substitute equations (14a,b) 
into (13b,c) and eliminate moments ML a MP by substitution 

of (12a,b) to (13b,c) we are able to reduce four differential 
equations (12a,b) a (13b,c) into two (17c,d). 
 If we introduce substitution of the parameters according to 
following formulas 
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The reduced linear part of the model consists from set of 
equations 
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and output variables are given by algebraic equations (14a,b). 
It is possible to write reduced linear part of the model as 
standard state-space model in matrix form as 
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Fig. 7 Model partitioning into linear and nonlinear part 

3. EXAMPLE OF THE BEHAVIOUR 

Basic verification of the above derived model was made by 
calculation for situations where we can guess the behaviour 
of the real device. First value of the state variables in steady 
states will be given for some combinations of parameters and 
motor supply voltages. Further time courses of the robot 
trajectory will be determined for some combinations of time 
courses of supply voltages when robot is starting from zero 
speed.  
Values of the parameters listed in the following tables are 
used in all of the calculations. These values are chosen so that 
they at least roughly correspond to the values estimated for 
the robot in Figure 1. The values of the geometrical and other 
parameters of the chassis are listed in Table 1. 

Table 1 Chassis parameters 
Notation Value Dimension Meaning 
lL 0.040 m distance of the left wheel 

from point B 
lP 0.060 m distance of the right wheel 

from point B 
lT 0.020 m distance of centre of gravity 

from join between wheels 
lK 0.040 m distance of caster wheel 

from join between wheels 
r 0.050 m semi-diameter of driving 

wheel 
m 1.250 kg total weight of the robot 
kv 0.100 kg.s-1 coefficient of the resistance 

against robot linear motion  
JT 0.550 kg.m2 moment of inertia of robot 

with respect to centre of 
gravity 

kω 1.350 kg.m2.s-1 coefficient of the resistance 
against robot rotating 

 
Necessary parameters for DC motors with common voltage 
source description are given in Table 2. We consider identical 
motors with identical parameters. 
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Table 2 DC motors parameters 
Notation Value Dimension Meaning 
R 2.000 Ω motor winding resistivity 
L 0.050 H motor inductance 
K 0.100 kg.m2.s-2.A-1 electromotoric constant 
RZ 0.200 Ω source resistance 
U0 10.00 V source voltage 
J 0.025 kg.m2 total moment of inertia of 

rotor and gearbox 
kr 0.002 kg.m2.s-1 coefficient of the 

resistance against rotating 
of rotor and gearbox 

pG 25 --- gearbox transmission ratio 

3.1 Steady state for different positions of point B and motors 
voltages 

The steady states are calculated as a solution of the system of 
eight equations in matrix form (15). Traces of the wheels are 
shown during the first 20 seconds of motion from zero initial 
conditions - calculated from state-space model (18) and from 
the equations for the trajectories calculation (9,10). 
Trajectories are plotted for the situation that the origin of the 
coordinate system is in the centre between the wheels, which 
is on the x-axis and the default orientation of the robot is in 
the direction of the y axis. Starting and final position of the 
robot is displayed using the triangle that connects all three 
wheels. Trajectory of the centre of gravity is displayed in 
addition to the traces of the wheels. 
Steady-state A (Table 3a) corresponds to the geometric 
arrangement - point (B) is midway between the wheels and 
both engines have the same supply voltage. The result is that 
the robot moves only linearly. 
 

Table 3a Steady state A 
 left wheel right wheel  
U 1.000 1.000 V 
l 0.050 0.050 m 
i 0.13514 0.13514 A 
ω 1.07534 1.07534 Hz 
M 0.000001 0.000001 N.m 
vB 0.0013513 m.s-1

ωB 0.0000000 Hz 
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Trajectory of wheels L,K,P
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)
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The following three experiments show the influence of centre 
of gravity position. Steady-state B (table 3b) holds again for 
the symmetric geometric arrangement but only one motor is 
powered. Steady state C (table 3c) shows the situation in the 
case that point B is in the extreme position above the left 
wheel and only the left motor is powered. Steady-state D 
(table 3d) corresponds to the same position of the point B 
above the left wheel but is only right motor is powered. In all 
three cases the robot rotates and at the same time the point B 
has some linear speed. Both wheels produce translation 
because of the interactions. 

Table 3b Steady state B 
 left wheel right wheel  

U 0.000 1.000 V 
l 0.050 0.050 m 
i -0.02772 0.16287 A 
ω 0.04523 1.07935 Hz 
M -0.001176 1.03010 N.m 
vB 0.006757 m.s-1

ωB 0.123762 Hz 
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Table 3c Steady state C 

 left wheel right wheel  
U 1.000 0.000 V 
l 0.000 0.100 m 
i 0.16288 -0.02773 A 
ω 1.030062 0.045243 Hz 
M 0.00334400 -0.00334141 N.m 
vB 0.0129441 m.s-1

ωB -0.1237559 Hz 
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Table 3d Steady state D 
 left wheel right wheel  

U 0.000 1.000 V 
l 0.000 0.100 m 
i -0.02773 0.16286 A 
ω 0.045248 1.030120 Hz 
M -0.00334148 0.00334159 N.m 
vB 0.0005686 m.s-1

ωB 0.1237626 Hz 
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3.2 Dynamic behaviour for particular cases 

Dynamic behaviour is demonstrated on the time courses of 
currents and angular speeds of the motors starting from zero 
initial conditions. Graphs in Figure 8 show courses of supply 
voltages, currents and angular speeds for the case that the 
point B is in the middle between both motors with the same 
constant voltage 1 V. Situation corresponds to experiment 
with the parameters in Table 3a. 
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Fig. 8 Dynamic behaviour - constant supply voltage 1 V for 
both motors 
Situation where point B is in the middle between both motors 
with the right motor voltage 1 V only corresponds to 
experiment with the parameters in Table 3b. 
Illustrative example of behaviour in the situation when both 
voltages are periodic and with different amplitudes is in 
figures 10 and 11. On the left motor is a rectangular voltage 
of period 20 s, phase offset 10 s and amplitude 3. On the right 

motor is a rectangular voltage of doubled period 40 s and 
amplitude 4. 
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Fig. 9 Dynamic behaviour - constant supply voltage 1 V for 
right motor 
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Fig. 10 Dynamic behaviour - periodic voltages 
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Fig. 11 Dynamic behaviour - periodic voltages – speeds and 
trajectories 
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4. CONCLUSION 

The behaviour of the dynamic model in simulated situations 
agrees with the expected behaviour of a real device. Position 
of centre of gravity does not affect the behaviour in steady 
state. Immediate linear speed in point B depends on its 
position but the trajectories of the wheels are independent on 
the position of the point B.  
Interaction of the two drives was confirmed. Because of the 
forces of inertia and the forces of resistance also wheel 
without supply voltage rotates by the chassis movement. 
Even change of the meaning of the rotation occurs in the 
transient state. This situation is seen in Figure 9. 
Motor dynamics is negligible compared to the expected 
dynamics of the chassis for estimated motor parameters. 
Because the parameters of the model have physical meaning 
it will be possible to measure directly some parameters on 
real device. Identification of additional parameters will be 
possible experimentally from measured time courses of 
power voltages and the corresponding courses of angular 
speed of the wheels. 
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