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Abstract: This work deals with the design and application of a neuro-fuzzy control of a chemical reactor. 

The reactor is exothermic one. There are two parameters with only approximately known values in the 

reactor. These parameters are the reaction enthalpies. Because of the presence of uncertainty in the 

continuous stirred tank reactor, the robust output feedback is designed. The simulation results confirm 

that fuzzy control is one of the possibilities for successful control of chemical reactors. 

1. INTRODUCTION 

It is well known that the control of chemical reactors often 

represents very complex problems (Luyben 2007), (Molnár et 

al. 2002). Continuous stirred tank reactors (CSTRs) are often 

used plants in chemical industry and especially exothermic 

CSTRs are very interesting systems from the control 

viewpoint (Bequette 1991). The dynamic characteristics may 

exhibit a varying sign of the gain in various operating points, 

the time delay as well as non-minimum phase behaviour. 

Various types of disturbances also affect operation of 

chemical reactors, operation of chemical reactors is corrupted 

by many different uncertainties. Some of them arise from 

varying or not exactly known parameters, as e.g. reaction rate 

constants, reaction enthalpies or heat transfer coefficients 

(Antonelli and Astolfi 2003). All these problems can cause 

poor control response or even instability of classical closed-

loop control systems.  

Effective control of CSTRs requires application of some of 

advanced methods, as e. g. robust control (Gerhard et al. 

2004), (Tlacuahuac et al. 2005). Robust control has grown as 

one of the most important areas in modern control design 

since works by (Doyle 1981), (Zames 1983) and many others. 

Soft computing is a collection of methodologies like fuzzy 

system, neural networks and genetic algorithm, designed to 

tackle imprecision and uncertainty  involved in a complex 

nonlinear system. Recent reviews on soft computing around 

the world (Dote and Ovaska 2001) indicate that the number 

of soft computing based engineering applications is 

increasing. 

Fuzzy system has been known to provide a framework for 

handling uncertainties and imprecision by taking linguistic 

information from human experts. Fuzzy logic controllers have 

the advantages over the conventional controllers: they are 

cheaper to develop, they cover a wider range of operating 

conditions, and they are more readily customizable in natural 

language terms. FLCs have been implemented successfully in 

a variety of applications (Shapiro 2004), (Hayward and 

Davidson 2003), (Peri and Simon 2005). 

Fuzzy controllers are more robust than PID controllers becau-

se they can cover a much wider range of operating conditions 

than PID can, and can operate with noise and disturbances of 

different nature. Given the dominance of conventional PID 

control in industrial applications, it is significant both in theo-

ry and in practice if a controller can be found that is capable 

of outperforming the PID controller with comparable ease of 

use. Some of PID fuzzy controllers are quite close to this aim 

(Ying 2000). The simplest and most usual way to implement a 

fuzzy controller is to realize it as a computer program on a 

general purpose computer.  

 One popular soft computing method is neuro-fuzzy technique 

which is a hybrid combination of artificial neural networks 

(ANN) and fuzzy inference system (FIS). Adaptive Network 

based Fuzzy Inference System (ANFIS) (Jang 1993), (Jang et 

al. 1997) is such a neuro-fuzzy technique. A clustering 

algorithm partitions a data set into several groups such that 

the similarity within a group is larger than among groups 

(Jang et al. 1997). The idea of data grouping, or clustering, is 

simple in its nature and is close to the human way of thinking 

(Jain and Dubes 1988). A more recent overview can be found 

in a collection of (Bezdek and Pal 1992), (Backer 1995). 

2. FUZZY CONTROL 

Classic control theory is usually based on mathematical 

models which describe the behaviour of the process under 

consideration. The main aim of fuzzy control is to simulate a 

human expert (operator), who is able to control the process 

by translating the linguistic control rules into a fuzzy set 

theory. 

In 1965 Lotfi A. Zadeh introduced fuzzy sets, where a more 

flexible sense of membership is possible. The past few years 

have witnessed a rapid growth in the use of fuzzy logic 

controllers for the control of processes that are complex and 

badly defined. Most fuzzy controllers developed till now have 

been of the rule-based type (Driankov et al. 1993), where the 

rules in the controller attempt to model the operator´s 
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response to particular process situations. An alternative 

approach uses fuzzy or inverse fuzzy model in process 

control (Babuška et al. 1995), (Jang 1995) because it is often 

much easier to obtain information on how a process responds 

to particular inputs than to record how, and why, an operator 

responds to particular situations. A review of the work on 

fuzzy control has been presented by Lee (Lee 1990). 

Design of a simple fuzzy controller can be based on a three- 

step design procedure that builds on PID control: start with 

a PID controller, insert an equivalent, linear fuzzy controller 

and make it gradually nonlinear. 

A fuzzy controller (Fig. 1) can include empirical rules, and 

that is especially useful in operator controlled plants. Take 

e.g. a typical fuzzy controller:  

• if error is negative and change in error is negative then 

output is negative big 

• if error is negative and change in error is zero then output is 

negative medium. 

The collection of rules is called a rule base. The computer is 

able to execute the rules and compute a control signal 

depending on the measured inputs error and change in error. 

The inputs are most often hard or crisp measurements from 

some measuring equipment. A dynamic controller would have 

additional inputs, for example derivatives, integrals, or 

previous values of measurements backwards in time. 

The block fuzzification converts each piece of input data to 

degrees of membership by a lookup in one or several 

membership functions. The rules may use several variables 

both in the condition and the conclusion of the rules. 

Basically a linguistic controller contains rules in the if-then 

format, but they can be presented in different formats. 

The resulting fuzzy set must be converted to a number that 

can be sent to the process as a control signal. This operation 

is called defuzzification. There are several defuzzification 

methods. Output scaling is also relevant.  

 

Fig. 1. Fuzzy control (Passino and Yurkovich 1998) 

3. ADAPTIVE NETWORK BASED FUZZY INFERENCE 

SYSTEM (ANFIS) 

The output sets can often be linear combinations of the 

inputs, or even a function of the inputs. The developed Fuzzy 

Logic Toolbox for the software package Matlab implements 

one of the hybrid schemes known as the ANFIS. ANFIS 

represents a Sugeno-type fuzzy system. Suppose the rule base 

of a Sugeno - Takagi fuzzy system as follows (Nauck et al. 

1977), (Takagi et al. 1985): 

 if  x1 is Ai and x2 is Bi  

 then y = pi x1 + qi x2 + ri, i = 1, ..., N (1) 

The if-parts (antecedents) of the rules describe fuzzy regions 

in the space of input variables error e, its derivative de and 

the then-parts (consequents) are functions of the inputs, 

usually linear with consequent parameters pi, qi, ri, y is an 

output variable, Ai, Bi are fuzzy sets. 

ANFIS represents a useful neural network approach for the 

solution of function approximation problems. Data driven 

procedures for the synthesis of ANFIS networks may be 

based on the subtractive clustering technique (Chiu 1994) of 

the input-output space of a training set of numerical samples 

of the unknown function to be approximated.  

In the ANFIS architecture, FIS is described in a layered, 

feedforward network structure (Fig. 6.). The parameters in 

layer 1 are called premise parameters and they are adjustable. 

The second layer represents the T-norm operators that 

combine the possible input membership grades in order to 

compute the firing strength of the rule. In the basic ANFIS 

method these parameters are not adjustable. The third layer 

implements a normalisation function to the firing strengths 

producing normalised firing strengths. The fourth layer 

represents the consequent parameters that are adjustable. The 

fifth layer represents the aggregation of the outputs performed 

by weighted summation. This is not adjustable. 

3.1 Subtractive clustering 

Subtractive clustering method is a method which extracts 

rules from supplied input-output training data. The idea of 

fuzzy clustering is to divide the data space into fuzzy clusters, 

each representing one specific part of the system behavior. 

After projecting the clusters onto the input space, the 

antecedent parts of the fuzzy rules can be found. The 

consequent parts of the rules can then be simple functions. In 

this way, one cluster corresponds to one rule of the TSK 

model. Several clustering methods are well known (Chiu 

1994), (Yager and Filev 1994). 

Let us consider a collection of n data points {x1, x2, ..., xn} in 

an M dimensional space. Each data point is a candidate for 

cluster centers, a density measure at data point xi is defined as 

 






 
2

1

jk

N

=j

k xxαxpe=P  (2) 

where 
2)a(r

γ
=α , kP is the new potential-value of each 

examined point, is the weight between i-data to j-data, x is 

the data point, is variables (commonly set 4), ra is a cluster 
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radius, it is a positive constant that represents the radius of 

data neighborhood. 

A data point will have a high density value if it has many 

neighboring data points. The first cluster center xc1 is chosen 

as the point having the largest density value Pc1. Next, the 

density measure of each data point xi is revised as follows: 

 









2

1exp1 cxkxβcPkP=kP  (3)  

where =/(rb)
2
, ηr=r ab , rb  is a positive constant which 

defines a neighborhood that has measurable reductions in 

density measure. Therefore, the data points near the first 

cluster center xc1 will have significantly reduced density 

measure. Pc1  is the new potential-value data as cluster centre, 

is the weight of i-data to cluster centre, is the quash 

factor, usually set 1,5, ri is the distance between cluster 

centre.  

When the potential of all data points have been revised 

according to (3), the data point with highest remaining 

potential is selected as the second cluster center. We then 

further reduce the potential of each data point according to 

their distance to the second cluster center. The process is 

repeated until the potential of the points reaches the stopping 

criterion 1cPkP  , where  is the reject ratio, usually set 

0,15. 

4. SIMULATION AND RESULTS 

4.1 Chemical reactor 

Consider a continuous-time stirred tank reactor (CSTR) with 

the first order irreversible parallel exothermic reactions 

according to the scheme B
k

A  1 , C
k

A  2 , where B 

is the main product and C is the side product. The dynamic 

mathematical model of the reactor is obtained by mass 

balances of reactants, enthalpy balance of the reactant 

mixture and enthalpy balance of the coolant. Assuming ideal 

mixing in the reactor and other usual simplifications (Ingham 

et al. 1994), (Vasičkaninová and Bakošová 2006), the 

simplified nonlinear dynamic mathematical model of the 

chemical reactor consists of five differential equations 

 AAAAv
A ckckc

V

q
c

V

q
=

dt

dc
21   (4) 
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V

q
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V
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  c

pccc

c

c

vc
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cρV

Ak
+T

V

cq
T

cV

q
=

dt

dT
   (8) 

with initial conditions cA(0), cB(0), cC(0), T(0), Tc(0). The 

reaction rate coefficients are non-linear functions of the 

reaction temperature being defined by the Arrhenius relations 

 

 2,1,
i

i0i 


iek=k RT

E

 (9)  

 

Here, c are concentrations, T are temperatures, V are 

volumes,  are densities, cp are specific heat capacities, q are 

volumetric flow rates, h are reaction enthalpies, A is the heat 

transfer area, ki is the heat transfer coefficient, ki0 is the pre-

exponential factor, E is the activation energy and R is the 

universal gas constant. The subscript c denotes the coolant 

and the superscript s denotes the steady-state values in the 

main operating point.  

The values of constant parameters and steady-state inputs of 

the chemical reactor are summarized in Table 1. Model 

uncertainty of the over described reactor follows from the fact 

that there are two physical parameters in this reactor, the 

reaction enthalpies, which values are known within following 

intervals (Table 2). The nominal values of these parameters 

are mean values of theirs intervals.  

 

Table 1. Constant parameters and steady-state inputs of 

the chemical reactor 

Variable  Unit Value 

q  m
3
min

-1
 0,015  

V m
3
 0,23  

VC  m
3
 0,21 

ρ kg m
-3

 1020  

ρC  kg m
-3

 998  

cp  kJ kg
-1

 K
-1

 4,02 

cpc kJ kg
-1

 K
-1

 4,182 

A  m
2
 1,51 

k  kJ m
-2

 min
-1

 K
-1

 42,8  

k10  min
-1

 1,55×10
11

  

k20  min
-1

 4,55×10
25

 

E1/R K 9850 

E2/R  K 22019 

cAv kmol m
-3

 4,22  

cBv kmol m
-3

 0  

cCv kmol m
-3

 0 

Tv K 328  
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Tvc K 298 

q
s
c m3 min

-1
 0,004 

T
s 

K 363,61 

T
s
c K 350,15  

c
s
A kmol m

-3
 0,4915  

c
s
B kmol m

-3
 2,0042  

c
s
C kmol m

-3
 1,7243 

 

Table 2. Uncertain parameters of the chemical reactor 

Variable  Unit Value 

-h1min  kJ kmol
-1

 8,4×10
4
  

-h1max  kJ kmol
-1

 8,8×10
4
 

-h2min  kJ kmol
-1

 1,62×10
4
  

-h2max   kJ kmol
-1

 2,02×10
4
 

4.3 Neuro-fuzzy controller of the chemical reactor 

In this paper, ANFIS and subtractive clustering method were 

used to design fuzzy controller. The design procedure is 

conducted in two stages: first subtractive clustering is applied 

to extract fuzzy model from experimental data; then ANFIS is 

applied to improve the fuzzy model performance. 

Sugeno-type neuro-fuzzy inference system was generated in 

the form:  

 

8,,1,
d

d

isais
d

d
ais





iiseirt

e
iqeipifthen

iCeiB
t

e
iAeif

 (10)  

where e is the control error, pi, qi, ri, si are consequent 

parameters. The symmetric Gaussian function (gaussmf in 

MATLAB) (11) was chosen as the membership function. The 

Gaussian function  depends on two parameters  and c as it 

is seen in (8), where x represents e, de/dt or e. 

  

 












 

2

2

2σ

cx

e=cσ,x;  (11) 

The parameters  and c for gaussmf are listed in the Table 3. 

For obtaining of these parameters, it was necessary to have 

the input data sets. These data were obtained by simulation of 

experimental PID controllers. The consequent parameters in 

the control input rule (10) are listed in Table 4. Figure 2 

demonstrates the Takagi-Sugeno fuzzy inference system. 

Figure 3 shows the structure of Anfis. 

Table 3. Parameters of the Gaussian curve membership 

functions 

e de ∫e 

i ci i ci i ci 

2,91 

2,95 

-4,72 

2,71 

0,44 

0,50 

-0,37 

0,79 

23,9 

23,9 

-56,33 

0,0013 

 

 

 

Table 4. Consequent parameters 

pi qi ri si 

-3,110
-3 

-1,610
-4 

-6,710
-3 

8,310
-3 

-3,110
-3 

-2,610
-4 

-5,410
-3 

2,410
-3 

-2,910
-3 

-1,510
-4 

-6,110
-3 

5,610
-3 

-3,310
-3 

-2,510
-4 

-7,010
-3 

3,910
-3 

-3,210
-3 

-2,610
-4 

-6,710
-3 

2,310
-3 

-3,310
-3 

-2,210
-4 

-7,010
-3 

4,810
-3 

-3,110
-3 

-2,610
-4 

-6,610
-3 

3,410
-3 

-3,310
-3 

-2,210
-4 

-6,310
-3 

4,010
-3 

 

 

Fig. 2. Fuzzy inference system 

 

Fig. 3. Structure of Anfis 

4.4 Control of the chemical reactor  

The reactions in the described reactor are exothermic ones 

and the heat generated by the chemical reactions is removed 

by the coolant in the jacket of the tank. The measured output 

is temperature of the reaction mixture T, the coolant flow rate 

qc
 
is chosen as the control input. The control objective is to 

keep the temperature of the reacting mixture close to a 

desired value.   

The steady state behaviour of the chemical reactor with no-

minal values and also with 4 combinations of minimal and 

maximal values of 2 uncertain parameters was studied at first. 

The maximal concentration of the main product B is obtained 

by temperature T=355 K (Fig. 4).  
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Fig. 4. Concentration of the main product B in the 

dependence on the T 

The open-loop behaviour of the reactor was also studied. 

Simulation results obtained for the nominal model and also 

for 4 vertex systems are shown in Figure 5, 0 – nominal sys-

tem, 1 – h1min, h2min, 2 – h1max,, h2max, 3 – h1max, h2min, 4 – h1min, 

h2max. 

 

Fig. 5. Open-loop response of the CSTR: 0 - nominal system, 

1, 2, 3, 4  - vertex systems  

In Figure 6 the neuro-fuzzy control of the reacting mixture 

temperature and the reference trajectory obtained for the 

nominal model and for 4 vertex systems are shown. The 

control inputs are presented in Figure 7. The controller is fast 

and the overshoots are minimal. 

In praxis, it is necessary to work with noisy signals, the white 

noise was added to the controlled output. Figures 8, 9 present 

the simulation results of the fuzzy control of the chemical 

reactor in the case when disturbances affect the controlled 

process. Disturbances were represented by temperature 

changes in the feed temperature of the reaction mixture. 

Following disturbances were loaded: T decreased by 5 K at 

t=200 min and increased by 10 K at t=200 min.  

The neuro-fuzzy PID controller attenuates disturbances very 

fast and the overshoots caused by disturbances are minimal. 

 

 

Fig. 6. Control of the CSTR: 0 - nominal system, 1, 2, 3, 4  - 

vertex systems  

 

Fig. 7. Control inputs to the CSTR: 0 - nominal system, 1, 2, 

3, 4  - vertex systems  

 

Fig. 8. Control of the CSTR with disturbances and noisy 

signals: 0 - nominal system, 1, 2, 3, 4  - vertex systems  
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Fig. 9. Control inputs to the CSTR with disturbances and 

noisy signals: 0 - nominal system, 1, 2, 3, 4  - vertex 

systems  

5. CONCLUSIONS 

In this paper, the neuro-fuzzy control is applied to the 

exothermic CSTR with uncertain parameters. Simulations 

confirmed that robust neuro-fuzzy controllers can be 

successfully used for control of CSTRs with uncertainties and 

disturbances, even though CSTRs are very complicated 

systems from the control point of view. All simulations were 

done using MATLAB.  
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