
Automatic Control Laboratory, ETH Zürich

Slovak University of Technology in Bratislava

Modeling Language
HYSDEL

Martin Herceg

Outline

• HYSDEL introduction

• New version HYSDEL 3.0

• Illustrative example

• Conclusion

Hybrid modeling

• Hybrid models
– describe evolution of systems including real

and logical variables in discrete time
• Model is typically written as a simulation function

which contains
– logical conditions, IF-THEN clauses, repeating

expressions etc.

Simulation
Function

u(k) y(k)

Very hard analysis and control synthesis

What is HYSDEL?

• HYSDEL = HYbrid System DEscription Language
• Framework for modeling of hybrid systems

– uses simple language statements to model
complex relations

– outputs a model which is suitable for further
use

y = F(u)

Easy analysis and control synthesis

u(k) y(k)

What is the model?

x k1 = Ax k Buu k Bauxw k Baff

y k  = Cx k Duuk Dauxw k Daff

Ex x k Euuk Eauxw k  ≤ Eaff

– captures relations between real and logical
variables

– incorporates constraints
– suitable for control synthesis

How HYSDEL operates

1. User creates a HYSDEL file

2. Compiler translates the code into
mathematical form

3. Output model can be processed by
MATLAB

HYSDEL
Language

Compilation
Mathematical

Model

A bit of history

• HYSDEL is available since 2000
• Very successful in industry

– cement mill control
– kiln control
– pump schedule optimization
– ...

A bit of history

• HYSDEL is available since 2000
• Very successful in industry

– cement mill control
– kiln control
– pump schedule optimization
– ...

• Contains a lot of shortcomings
• New version is coming with several

enhancements

Outline

• HYSDEL introduction

• New version HYSDEL 3.0

• Illustrative example

• Conclusion

Features of HYSDEL 3.0

• Extended language

• Merging feature

• Graphical modeling

• Model optimization

P1 P2

P
u y

Language extensions

• Language is similar to MATLAB
– Variables can be defined as vectors/matrices
– Particular elements can be accessed via

indexing
– FOR loops allowed

• Allows to declare submodels

HYSDEL
Language

Compilation
Mathematical

Model

Example of extended syntax

PARAMETER { REAL A = [1, 2; 3, 4]; }
STATE {
 REAL x(nx*N, 2) [lb, ub];
}

• Vectors, matrices

• Indexing

PARAMETER { REAL N(2); }
CONTINUOUS {
 x = x(N(1:2), 1:3) + u(2*N);
}

• FOR loops

FOR (i = 1:N) {
 x(i) = 2*x(N-i+1);
}

• Motivation:
– reduce the effort of creating and maintaining

complex models
• Approach:

– allow model hierarchy directly on the
language level

Submodel declaration

MODULE {
 silo S1, S2, S3, S4;
}

silos.hys

• Illustrative example – cement plant
• Usually different parts of such a complex system

are modeled by different people

Merging feature

• Split plant into parts and create individual
modules

Feeder Separator
Silos

Distributionfeeder.hys separator.hys
silos.hys

distribution.hys

Step 1

• Define interconnections between modules

Feeder Separator
Silos

Distribution

feeder.output = separator.input

Step 2

• Define interconnections between modules

Feeder Separator
Silos

Distribution

feeder.output = separator.input
separator.output = silos.input

Step 2

• Define interconnections between modules

Feeder Separator
Silos

Distribution

feeder.output = separator.input
separator.output = silos.input
silos.output = distribution.input

Step 2

Graphical level

• Why doing merging of submodels manually?
• Use Simulink to draw connections between

submodels!

1. Create Simulink scheme

2. Let HYSDEL do the rest

production.hys

Translation process

HYSDEL
Language

Compilation
Mathematical

Model

• Compiler is based on the YALMIP package
– easy to maintain
– platform independent
– provides means to improve the quality of the

model

Exploiting the model

HYSDEL
Language

Compilation
Mathematical

Model

• Interoperable with MPT toolbox
– model analysis
– simulation in Matlab & Simulink
– control design

Outline

• HYSDEL introduction

• New version HYSDEL 3.0

• Illustrative example

• Conclusion

Control of a hybrid car

• Task:
– create model “turbo_car.hys”
– design a predictive controller

• Plant characteristics
– 3 real states
– 1 real and 1 logical input
– constraints on states/inputs

Target

Time

Operating modes

• Hybrid nature comes from input switch “TURBO”
– Normal mode

– Turbo mode
• input signal is doubled
• can last only 10 sampling times

• Model description

z k =uk 

z k =2uk 

x k1=Ax k Bz k 

HYSDEL code

declaration
of variables
and parameters

implementation
of variable
relations

SYSTEM turbo_car {
 INTERFACE {
 STATE { REAL position [-50, 50];
 REAL velocity [-10, 10];
 REAL turbocount [0, -10]; }
 INPUT { REAL acc [-1, 1];
 BOOL turbo; }
 OUTPUT { REAL y; }
 }
 IMPLEMENTATION {
 AUX { REAL z; }
 DA {
 z = {IF turbo THEN 2*acc ELSE acc};
 }
 CONTINUOUS {
 position = position + velocity + z;
 velocity = velocity + 0.5*z;
 turbocount = turbocount - (REAL turbo);
 }
 OUTPUT { y = position; }
 }
}

Predictive control design

• Obtain model “F” using MPT toolbox

• Define optimal control problem “P”

>> F = mpt_sys('turbo_car');

subject to{
xk1 = F xk ,uk

xk ∈ X
uk ∈ U

min
uk

∑
k=1

N

∣Qxk−r ∣∣Ruk∣ >> P.N = 5;
>> P.Q = [1, 1];
>> P.R = 1;
>> P.norm = 1;
>> P.xref = 30;

Results

• Calculate predictive controller

• Closed loop simulation

>> controller = mpt_control(F, P);

Conclusion

• HYSDEL generate hybrid models suitable for
analysis and control design

• HYSDEL 3.0 offers
– extended syntax for easier modeling (vectors,

matrices, FOR-loops)
– model merging for modeling of complex

systems
– generation of better quality models for a more

efficient control synthesis
• HYSDEL 3.0 will be publicly available soon

Additional slides

Production system

• Task:
– create model using

HYSDEL
– simulate the outputs

• Plant characteristics:
– 3 dynamical systems
– 1 static system
– ON/OFF switches
– constraints on variables

Processing using HYSDEL

• Create individual files
– tank.hys
– belt.hys
– packer.hys

• Merge them into one master and simulate
– production.hys

	This is the Test-Title Slide and it can be 3 Lines long
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

