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Hybrid modeling

• Hybrid models
– describe evolution of systems including real 

and logical variables in discrete time
• Model is typically written as a simulation function 

which contains 
– logical conditions, IF-THEN clauses, repeating 

expressions etc.

Simulation
Function

u(k) y(k)

Very hard analysis and control synthesis



What is HYSDEL?

• HYSDEL = HYbrid System DEscription Language
• Framework for modeling of hybrid systems

– uses simple language statements to model 
complex relations

– outputs a model which is suitable for further 
use

y = F(u)

Easy analysis and control synthesis

u(k) y(k)



What is the model?

x k1 = Ax k Buu k Bauxw k Baff

y k  = Cx k Duuk Dauxw k Daff

Ex x k Euuk Eauxw k  ≤ Eaff

– captures relations between real and logical 
variables

– incorporates constraints
– suitable for control synthesis



How HYSDEL operates

1. User creates a HYSDEL file

2. Compiler translates the code into 
mathematical form

3. Output model can be processed by 
MATLAB

HYSDEL
Language

Compilation
Mathematical

Model



A bit of history

• HYSDEL is available since 2000
• Very successful in industry

– cement mill control
– kiln control
– pump schedule optimization
– ...



A bit of history

• HYSDEL is available since 2000
• Very successful in industry

– cement mill control
– kiln control
– pump schedule optimization
– ...

• Contains a lot of shortcomings
• New version is coming with several 

enhancements
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Features of HYSDEL 3.0

• Extended language

• Merging feature

• Graphical modeling

• Model optimization

P1 P2

P
u y



Language extensions

• Language is similar to MATLAB
– Variables can be defined as vectors/matrices
– Particular elements can be accessed via 

indexing
– FOR loops allowed

• Allows to declare submodels

HYSDEL
Language

Compilation
Mathematical

Model



Example of extended syntax

PARAMETER { REAL A = [1, 2; 3, 4]; }
STATE {
  REAL x(nx*N, 2) [lb, ub];
}

• Vectors, matrices

• Indexing

PARAMETER { REAL N(2); }
CONTINUOUS {
  x = x(N(1:2), 1:3) + u(2*N);
}

• FOR loops

FOR (i = 1:N) {
  x(i) = 2*x(N-i+1);
} 



• Motivation:
– reduce the effort of creating and maintaining 

complex models
• Approach:

– allow model hierarchy directly on the 
language level

Submodel declaration

MODULE {
 silo  S1, S2, S3, S4;
}

silos.hys



• Illustrative example – cement plant
• Usually different parts of such a complex system 

are modeled by different people

Merging feature



• Split plant into parts and create individual 
modules

Feeder Separator
Silos

Distributionfeeder.hys separator.hys
silos.hys

distribution.hys

Step 1



• Define interconnections between modules

Feeder Separator
Silos

Distribution

feeder.output    = separator.input

Step 2



• Define interconnections between modules

Feeder Separator
Silos

Distribution

feeder.output    = separator.input
separator.output = silos.input

Step 2



• Define interconnections between modules

Feeder Separator
Silos

Distribution

feeder.output    = separator.input
separator.output = silos.input
silos.output     = distribution.input

Step 2



Graphical level

• Why doing merging of submodels manually?
• Use Simulink to draw connections between 

submodels!

1. Create Simulink scheme

2. Let HYSDEL do the rest

production.hys



Translation process

HYSDEL
Language

Compilation
Mathematical

Model

• Compiler is based on the YALMIP package
– easy to maintain
– platform independent
– provides means to improve the quality of the 

model



Exploiting the model 

HYSDEL
Language

Compilation
Mathematical

Model

• Interoperable with MPT toolbox
– model analysis
– simulation in Matlab & Simulink
– control design
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Control of a hybrid car

• Task:
– create model “turbo_car.hys”
– design a predictive controller

• Plant characteristics
– 3 real states
– 1 real and 1 logical input
– constraints on states/inputs

Target

Time



Operating modes

• Hybrid nature comes from input switch “TURBO”
– Normal mode

– Turbo mode
• input signal is doubled
• can last only 10 sampling times

• Model description

z k =uk 

z k =2uk 

x k1=Ax k Bz k 



HYSDEL code

declaration
of variables
and parameters

implementation 
of variable 
relations

SYSTEM turbo_car {
  INTERFACE {
    STATE {   REAL position [-50, 50];  
                    REAL velocity [-10, 10];
                    REAL turbocount [0, -10];  }
    INPUT {   REAL acc [-1, 1];
                    BOOL turbo;    }
    OUTPUT {   REAL y;    }
  }
  IMPLEMENTATION {
    AUX {   REAL z;   }
    DA {  
             z = {IF turbo THEN 2*acc ELSE acc}; 
    }
    CONTINUOUS {
      position = position + velocity + z;
      velocity = velocity + 0.5*z;
      turbocount = turbocount - (REAL turbo);
    }
    OUTPUT {   y = position; }
  }
}



Predictive control design

• Obtain model “F” using MPT toolbox

• Define optimal control problem “P”

>> F = mpt_sys('turbo_car');

subject to{
xk1 = F xk ,uk

xk ∈ X
uk ∈ U

min
uk

∑
k=1

N

∣Qxk−r ∣∣Ruk∣ >> P.N = 5;
>> P.Q = [1, 1];
>> P.R = 1;
>> P.norm = 1;
>> P.xref = 30;



Results

• Calculate predictive controller

• Closed loop simulation

>> controller = mpt_control(F, P);



Conclusion

• HYSDEL generate hybrid models suitable for 
analysis and control design

• HYSDEL 3.0 offers
– extended syntax for easier modeling (vectors, 

matrices, FOR-loops)
– model merging for modeling of complex 

systems
– generation of better quality models for a more 

efficient control synthesis
• HYSDEL 3.0 will be publicly available soon



Additional slides



Production system

• Task:
– create model using 

HYSDEL
– simulate the outputs

• Plant characteristics:
– 3 dynamical systems
– 1 static system
– ON/OFF switches
– constraints on variables



Processing using HYSDEL

• Create individual files
– tank.hys
– belt.hys
– packer.hys

• Merge them into one master and simulate
– production.hys
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