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Self-optimizing control and links with explicit MPC
Efficient on-line computation of constrained optimal control

Self-optimizing control with constraints (“constrained
SOC”)

Example: Ammonia production
How does constrained SOC fit into the control hierarchy?
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Implementation of optimal operation using off-line
computations

Paradigm 1

On-line optimizing control where measurements are primarily
used to update the model. With arrival of new measurements,
the optimization problem is resolved for the inputs.

Paradigm 2

Pre-computed solutions based on off-line optimization.
Typically, the measurements are used to (indirectly) update the
inputs using feedback control schemes. Focus of this work.

Henrik Manum Explicit self-optimizing control



Implementation of optimal operation using off-line
computations

Paradigm 1

On-line optimizing control where measurements are primarily
used to update the model. With arrival of new measurements,
the optimization problem is resolved for the inputs.

Example: Classical (implicit) MPC.
Paradigm 2

Pre-computed solutions based on off-line optimization.
Typically, the measurements are used to (indirectly) update the
inputs using feedback control schemes. Focus of this work.

Examples: Explicit MPC and self-optimizing control.
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What variables should we control? ®

Cm=C-+n n
——>{ Controller (< A<
Cs
u C
Y
d y Measurement
—> Plant > .
combination

Self-optimizing control

Choice of H such that acceptable operation is
achieved with constant setpoints (cs constant).
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What variables should we control? ®

Cm=C-+n n
——>| Controller (< A<
Cs
u C
Y
d y Measurement
—> Plant > .
combination

Self-optimizing control

Choice of H such that acceptable operation is
achieved with constant setpoints (cs constant).

@ Optimal cg is invariant with respect to disturbances d

@ Insensitive to measurement errors n
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What variables should we control? ®

ALoss =J(u,d) — Jopt(d)

.

do Disturbance
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What variables should we control? ®

A Loss =J(u,d) — Jopt(d)

Loss due to
constant setpoint

policy

.

dg ———> d Disturbance
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What variables should we control? ®

ALoss =J(u,d) — Jopt(d)

/

.

do d Disturbance
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What variables should we control? ®

ALoss =J(u,d) — Jopt(d)

Acceptable loss

.

do d Disturbance
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What variables should we control? e

ALoss =J(u,d) — Jopt(d)

cs =Hy =c do Disturbance
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Nullspace method for QP problems ]
Theorem (Nullspace method for QP)

@ Consider the quadratic problem

minJ(u,d) = [3], [Ji” j:ﬂ [3] (1)

@ In addition there are ny independent measurements

y = GYu + G)d

@ Ifny > ny + ng there exists an H such that the
combinations ¢ = Hy are invariant to the disturbances

@ H may be found from HF = 0, where

opt _
F= 6(‘)9/dp = _(Gy‘]uulJud - Gz)

Alstad and Skogestad, Ind. Eng. Chem. Res., 2007
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Linear-quadratic optimal control ]

For a given x(t), one solves the quadratic problem

N-1
min J(U, X (1)) = X\Pxn + > [X¢ Qi + Uy Ruy ]

U=(up,uz,,Un_1) o
subject to

Xo = x(0)
Xk+1 = AXy + Buy, k=0,1,---,N—-1
yk:CXk7 k:0717‘”7N
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Link between linear-quadratic control and

self-optimizing control

Let

The optimal combination
c =Hy
can be written as the feedback law

c=u-—(Kx +9)

and H (or K) can be obtained from nullspace method
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Efficient on-line computation of constrained optimal

control ®

@ The results in the following slides are taken from:
Baotic¢ et al: “Efficient on-line implementation of
constrained optimal control”, SIAM Journal of Control and
Optimization, 2008.
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Efficient on-line computation of constrained optimal

control ®

@ The results in the following slides are taken from:
Baotic¢ et al: “Efficient on-line implementation of
constrained optimal control”, SIAM Journal of Control and
Optimization, 2008.

@ Here we focus on linear-quadratic finite horizon optimal
control, i.e. problems that can be written on the form

1 1
J*(x) = =X YXx+min ZU'HU + x'FU
(x) = Zx¥x+min 3 * (MPC)
s.t. MYU <M + M*x
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Efficient on-line computation of constrained optimal

control ®

@ The results in the following slides are taken from:
Baotic¢ et al: “Efficient on-line implementation of
constrained optimal control”, SIAM Journal of Control and
Optimization, 2008.

@ Here we focus on linear-quadratic finite horizon optimal
control, i.e. problems that can be written on the form

1 1
J*(x) = =X YXx+min ZU'HU + x'FU
(x) = Zx¥x+min 3 * (MPC)
s.t. MYU <M + M*x

@ Solution: u(x) =Fix+Gj, ¥xeP;, i=1,... Np.
@ Goal: Efficient implementation of the solution to (MPC).
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Descriptor functions

Definition (PWA descriptor function)
A scalar continuous real-valued PWA function f : X; — R,

f(x):=fi(x):=ax+b if xeP, (2)
with a; € R™, b; € R, is called a descriptor function if

ai;éaj, VjeCi, i:].,...,Np, (3)

where U;P; = X; ¢ R™, and C; is the list of neighbors of P;.
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Descriptor functions ®

descriptor function f
A

Py Ps3

>»
parameter X
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Descriptor functions ®

descriptor function f
A —continuous
—scalar

Py Ps3

param%ter X
Necessary information:

@ List of neighbors C; to each polytope P;

@ List of “correct” signs of corresponding function f; — f;
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Descriptor functions ®

descriptor function f
A —continuous
—scalar

Py Ps3

param%ter X
Necessary information:

@ List of neighbors C; to each polytope P;

@ List of “correct” signs of corresponding function f; — f;

From this we can make a global algorithm for the point location
problem.
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Descriptor functions ®

@ The PWA control law can be used as a (vector-valued)
PWA descriptor function.

@ By taking inner product with a “random” vector w we can
make a scalar-valued PWA descriptor function.
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Descriptor functions ®

@ The PWA control law can be used as a (vector-valued)

PWA descriptor function.

@ By taking inner product with a “random” vector w we can
make a scalar-valued PWA descriptor function.

@ Variable combinations inv' = Hiy — cL from the “nullspace
method” can also be used as a scalar PWA descriptor
function (by inner product with vector w).
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Constrained self-optimizing control

@ We consider the following problem:
1 [u]’ Juw Jug| U
m"2 [d] [ * Jaa] [d (QP)
s.t. MYu <M + M9d

@ In addition we have measurements on the form
y =GYu +G)d
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Constrained self-optimizing control

@ We consider the following problem:

1 [u]’ Juw Jug| U
mumz |:d:| |:* Jdd d (QP)
s.t. MYu <M + M4

@ In addition we have measurements on the form
y = GYu+ G)d
@ Goal: Find a “self-optimizing” implementation of (QP).
@ Nullspace method
@ Region detection with scalar PWA descriptor function

Henrik Manum Explicit self-optimizing control



Constrained self-optimizing control

1: Define objective function and constraints (optimal operation)
min, J(x,u,d) s.t f(x,u,d)=0, g(x,u,d)<0
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Constrained self-optimizing control ]

1: Define objective function and constraints (optimal operation)
miny J(x,u,d) s.t. f(x,u,d)=0, g(x,u,d)<0
2: For d = dg find nominal optimal point ug
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Constrained self-optimizing control ]

1: Define objective function and constraints (optimal operation)
miny J(x,u,d) s.t. f(x,u,d)=0, g(x,u,d)<0
2. For d = dg find nominal optimal point ug

3: Approximate the problem as a constrained QP around
(Uo, do)

I
o Ul [Juu Jug| |U u d
mlnui[d]{* Jdd][d] s.t. MYu <M + M9
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Constrained self-optimizing control

. Define objective function and constraints (optimal operation)
miny J(x,u,d) s.t f(x,u,d)=0, g(x,u,d)<0
: For d = dg find nominal optimal point ug

: Approximate the problem as a constrained QP around
(Uo, do)

/
. ¢]u Juw Jud| U u d
mmui{d} {* Jdd} {d} s.t. MYu <M + M9

. Solve this problem parametrically
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Constrained self-optimizing control ]

1: Define objective function and constraints (optimal operation)
miny J(x,u,d) s.t. f(x,u,d)=0, g(x,u,d)<0
2: For d = do find nominal optimal point ug
3: Approximate the problem as a constrained QP around
(Uo, do)
min, 1 B} {Jiu j“d} B} s.t. MYu <M + M4
dd
4: Solve this problem parametrically

5: In each region (in the disturbance space) use the nullspace
method to find controlled variables inv' := H'y — cl, using
available measurementsy = GYu + Gyd
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Constrained self-optimizing control

1: Define objective function and constraints (optimal operation)
miny J(x,u,d) s.t f(x,u,d)=0, g(x,u,d)<0
2: For d = dg find nominal optimal point ug

3: Approximate the problem as a constrained QP around
(uo, do)
/
miny 3 B} Fi” j“d} B} s.t. MYu <M + M4
dd
4: Solve this problem parametrically

5: In each region (in the disturbance space), use the nullspace
method to find controlled variables inv' := H'y — c{, using
available measurementsy = GYu + Géd.

6: Based on the invariants, make a scalar PWA descriptor
function for region detection.

u]
8]
I
il
it
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Constrained self-optimizing control

1: Define objective function and constraints (optimal operation)

min, J(x,u,d) s.t f(x,u,d)=0, g(x,u,d)<0
: For d = dg find nominal optimal point ug

: Approximate the problem as a constrained QP around
(Uo, do)
ul’ [J J u
min 1 [d] {i” J““] [d] st. MUu <M + M9
dd
. Solve this problem parametrically

: In each region (in the disturbance space), use the nullspace
method to find controlled variables inv' := H'y — cg, using
available measurementsy = GYu + G’ d.

: Based on the invariants, make a scalar PWA descriptor
function for region detection.
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Example: Ammonia production

PROBLEM FORMULATION

P P-2aP

Reactor

N3

Split

N5

»BH, + N, = 2NH3

AVAVA >
/ \rse P

Separator

nz

Ng
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Example: Ammonia production

PROBLEM FORMULATION

P P-2aP

v N2 Reactor

N3

Split

nz

N5

A\ "BH, + N, = 2NHj3

@ cost function:

AVAVA >
/ \I-S ep

Separator

Ng

J = p1e'MRT1In(P /Po) + p2e'ngRTsepIn(P /(P — AP)) +
P3e'N3CP(To — Tsep) (72 — 1) — PaNam,
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Example: Ammonia production

PROBLEM FORMULATION

5 G]{P _nGAP Split

nz

N5

v N2 Reactor !

Ng

AAA 3
A "BHz2 + N2 = 2NHg /v V\Tse; Separator

@ cost function:

J = p1e'MRT1In(P /Po) + p2e'ngRTsepIn(P /(P — AP)) +

2
P3e'N3CP(To — Tsep)(72 — 1) — PaNa,NH;
@ constraints: Tsep > T&w, €'Ng < Tmax-
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Example: Ammonia production
RESULTS

opt

0.02 0 q70.02 -1 di1 d50.02 -1 ¢
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Example: Ammonia production

RESULTS

N
o

J(soc) - 3°PYd)
5

loss
Ro

0.5

0

—-0.02
d2

-0.04 -1 di
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Degree of freedom: Controlled variables ®
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Degree of freedom: Controlled variables ®

Alt. 1 H fixed at “random” value,
typically ¢ = (y, u).
Alt. 2 H optimized, but constant.

Alt. 3 H is a function of operating
condition.
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Degree of freedom: Controlled variables ®

Alt. 1 H fixed at “random” value,
typically ¢ = (y, u).
Alt. 2 H optimized, but constant.

Alt. 3 H is a function of operating
condition.
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What should we do with constrained SOC?

Economijc
Optimization

Uo, Yo
Y

Desired target:
(U = W), (V = Yo)

A

<
3
O
A

Current situation.
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What should we do with constrained SOC?

Economijc P Economic P
Optimization < Optimization <
Uo, Yo Uo, Yo
A 4 y
Desired target: P approximation
(0= o). (V = yo) QP app
C,Si ...
A4
a,y Region detection |«
P
\ 4 y H, G
MPC < MPC <
Current situation. Self-optimizing around (ug, yo) but

also if active set changes
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Conclusions ®

) ‘ Efficient implementation of MPC ‘ and ‘nullspace method

gives \ constrained SOC \
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Conclusions ®

) ‘ Efficient implementation of MPC ‘ and ‘nullspace method

gives \ constrained SOC \

@ The proposed method is exact for linear processes with
guadratic objectives, but may be used for general plants
and objectives.
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Conclusions ®

) ‘ Efficient implementation of MPC ‘ and ‘nullspace method

gives \ constrained SOC \

@ The proposed method is exact for linear processes with
guadratic objectives, but may be used for general plants
and objectives.

@ Discussed in report: Measured nonlinearities (such as
active constraints) may be accounted for by adding extra
disturbances.
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Linear-Quadratic Model Predictive Control

— Target calculation:

.1, - = ’
min - = (17’ Qsn+(us—U)Rs (Us—0))+0s7

Xs,Us,n 2

subject to the constraints

I-A —-B 07 [x] (= Bd

C 0 | Us > )7—I0

C 0 I [n] ) y—-p
n>0

Umin S DUS S Umax, ymin S CXS‘HJ S ymaX

Taken from: J.B. Rawlings: Tutorial Overview of Model Predictive Control, IEEE Contr.
Sys. Mag. June 2000
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Linear-Quadratic Model Predictive Control

— Target calculation: — Receding Horizon Controller
1 (RHC):
min E('r]le'r]+(uS—G)RS(US—G))+qé77 Control the process towards (Xs, Us) in
Xeotls a “constrained LQR"-way

subject to the constraints

I-A —-B 07 [x] (= Bd

C 0 | Us > )7—I0

C 0 I [n] ) y—-p
n>0

Umin S DUS S Umax, ymin S CXS‘HJ S ymaX

Taken from: J.B. Rawlings: Tutorial Overview of Model Predictive Control, IEEE Contr.
Sys. Mag. June 2000
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Linear-Quadratic Model Predictive Control

— Target calculation: — Receding Horizon Controller
1 (RHC):
min E('r]le'r]+(uS—G)RS(US—G))+qé77 Control the process towards (Xs, Us) in
Xeotls a “constrained LQR"-way

subject to the constraints
— State estimator:

Bd Need this to get x(t), which is the

I-A -B O Xs

¢ 0 ! Us 2 Y —P “parameter” driving the RHC, and
C 0 - n s)y-p (p, d) which are giving integral action
n>0 and driving the target calculator.

Umin S DUS S Umax, ymin S CXS‘HJ S ymaX

Taken from: J.B. Rawlings: Tutorial Overview of Model Predictive Control, IEEE Contr.
Sys. Mag. June 2000
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