
Low-Complexity Polynomial 

Approximation of Explicit MPC 

via Linear Programming

M. Kvasnica1, J. Löfberg2, M. Herceg1, !. "irka1, M. Fikar1

1Slovak University of Technology in Bratislava
2Linköping University

How to implement MPC using limited resources?
(100 bytes, 100 FLOPS)

Explicit Model Predictive Control
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Explicit Model Predictive Control
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• Trading implementation speed for memory

• Memory storage is proportional to the number of regions

x0

u∗(x)

Hix ≤ Ki

u∗ = Fix + Gi

Main Issue: Memory Consumption

100 bytes x 100 regions = 10 kB of RAM

2 k
B

Need to reduce the number of regions as much as possible.
Ideally, remove all of them.

The Idea

• Find an approximate feedback which

- is defined over a single region (hence saves memory)

- guarantees closed-loop stability & constraint satisfaction

- trades off performance for implementation cost
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The Idea

• Find an approximate feedback which

- is defined over a single region (hence saves memory)
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• Polynomial is an ideal candidate (low storage, fast evaluation)
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The Idea Continued...

• Given is:

- LTI or PWA discrete-time system

- explicit MPC feedback which guarantees closed-loop stability

- PWA Lyapunov function

• Is it the only feedback which gives stability?

The Idea Continued...

• Given is:

- LTI or PWA discrete-time system

- explicit MPC feedback which guarantees closed-loop stability

- PWA Lyapunov function

• Is it the only feedback which gives stability?

• Theorem:

- a set of stabilizing feedbacks exists

- it is represented by polytopes

- it can be computed

Christophersen; Springer 2007

The Idea Continued...

• Given is:

- LTI or PWA discrete-time system

- explicit MPC feedback which guarantees closed-loop stability

- PWA Lyapunov function

• Is it the only feedback which gives stability?

• Theorem:

- a set of stabilizing feedbacks exists

- it is represented by polytopes

- it can be computed

• Corollary:

- if the polynomial resides in the set, 

stability is guaranteed



Set of Stabilizing Controllers

• Given:

- linear discrete-time system

- PWA Lyapunov function

x+ = Ax + Bu

J(x) = αix + βi if x ∈ Ri
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Set of Stabilizing Controllers

• Given:

- linear discrete-time system

- PWA Lyapunov function

• Sketch: 

- any control action which guarantees decrease of the Lyapunov 

function is stabilizing

- formally:

- for each i, j pair the constraints are

 linear, thus they form a polytope in

 the state-input space
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Set of Stabilizing Controllers

• Given:

- linear discrete-time system

- PWA Lyapunov function

• Sketch: 

- any control action which guarantees decrease of the Lyapunov 

function is stabilizing
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Set of Stabilizing Controllers

• This is not the set of all stabilizing controllers!

• Merely it is a set of inputs which render a given PWA Lyapunov 

function a Control Lyapunov function

Finding the Polynomial

• Objectives:

- the polynomial must never leave the set

- it should be close to the optimal feedback

• Tuning parameter: degree of the polynomial
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Finding the Polynomial

• Objectives:

- the polynomial must never leave the set

- it should be close to the optimal feedback

• Tuning parameter: degree of the polynomial

Finding the Polynomial

• Fix the degree of ũ(x) = a0 + a1x + · · · + anxn
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Finding the Polynomial

• Fix the degree of

• Optimize for performance:
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Finding the Polynomial

• Fix the degree of

• Optimize for performance:

• I.e. find coefficients for which the 

polynomials are non-negative over 

corresponding regions
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Polya#s Theorem

• Non-negativity of polynomial            over a polytope is related to 

non-negativity of coefficients of the extended polynomial over 

vertices

• Notice that the coefficients enter linearly:

• Therefore they can be found by a single linear program!

p(a, x)

p(a, x) ·
( ∑

xi

)M

min
a=[a0,...,an]

‖u∗(x)− ũ(x)‖1

s.t Ti − Si

[
x

ũ(x)

]
≥ 0, i = 1, . . . , N

∀x ∈ {x | Ki −Hix ≥ 0}, i = 1, . . . , N

ũ(x) = a0 + a1x + · · · + anxn

Numerical Examples

# of regions Explicit MPC Polynomial
Performance 

drop

2 states

146 13 000 B 24 B (degree 3) 24%

2 states

170 16 000 B 40 B (degree 5) 18%

3 states

66 11 000 B 60 B (degree 5) 31%

3 states

122 19 000 B 60 B (degree 5) 5%

Conclusions

PROs:
! the polynomial is easily found using linear programming

! extremely low memory footprint (< 100 bytes)

! guarantees stability, feasibility, and bounded performance drop

! works for linear and PWA systems

CONs:
! suboptimality

! Polya#s theorem is just a sufficient condition

! expensive symbolic computation of the extended Polya#s polynomial


